

Communication from Public

Name: Kathleen
Date Submitted: 01/20/2026 01:42 PM
Council File No: 25-1518
Comments for Public Posting: Communication from Applicant Representative - Consent to Time Limit Extension

ALSTON & BIRD

350 South Grand Avenue, 51st Floor
Los Angeles, CA 90071
213-576-1000 | Fax: 213-576-1100

Kathleen A. Hill

Direct Dial: +1 213 576 1056

Email: kathleen.hill@alston.com

January 20, 2026

Planning and Land Use Management Committee
Los Angeles City Hall
200 North Spring Street, Rm 395
Los Angeles, CA 90012
Attn: Candy Rosales, Legislative Assistant

Re: Council File No. 25-1518; 11973-11975 West San Vicente Boulevard / California Environmental Quality Act (CEQA) / Appeal

Dear Committee Members:

On behalf of the applicant, 11973 San Vicente, LLC, we consent to a Time Limit Extension for CF No. 25-1518 from February 13, 2026, to March 6, 2026.

Sincerely,

Kathleen A. Hill
PLANNING DIRECTOR

cc: Craig Bullock, Planning Director, Council District 11
(craig.bullock@lacity.org) - *via email only*
Jason McCrea, City Planner, Department of City Planning
(jason.mccrea@lacity.org) – *via email only*

Communication from Public

Name:

Date Submitted: 01/20/2026 02:01 PM

Council File No: 25-1518

Comments for Public Posting: Communication from Applicant Representative - Barry Building
Letter Response to Appeal

ALSTON & BIRD

350 South Grand Avenue, 51st Floor
Los Angeles, CA 90071
213-576-1000 | Fax: 213-576-1100

6Edward J. Casey

Email: ed.casey@alston.com

Direct Dial: +1 213 576 1005

January 20, 2026

Planning and Land Use Management Committee
Los Angeles City Hall
200 N. Spring St., Room 340
Los Angeles, CA 90012
Attn: Candy Rosales – PLUM Legislative Assistant
Email: clerk.plumcommittee@lacity.org

Re: Council File No.: 25-1518 - Appeal of Building and Safety Commission's Approval of Demolition Permit for Barry Building Located at 11973 San Vicente Boulevard

Dear Committee Members:

As land use counsel for the owner of the subject property located at 11973 San Vicente Boulevard (“Subject Property”) and applicant (“Applicant”) for a permit to demolish (the “Demo Permit”) the two-story former commercial building on the Subject Property commonly referred to as the “Barry Building.” I am sending this letter to provide the enclosed report from the structural expert firm of WSP that responds to a letter from Alpha Structural, Inc. that was submitted on November 15, 2025 by the appellant Angelenos for Historic Preservation (“Appellant”) in support of its appeal of the Building and Safety Commission’s approval of the Demo Permit. As the WSP report demonstrates, the report from Alpha is substantially incomplete and does not address many of the structural and seismic and deficiencies in the Barry Building.

Sincerely,

Edward J. Casey

cc: Craig Bullock, Planning Director, Council District 11
(craig.bullock@lacity.org) - *via email only*
Jason McCrea, City Planner, Department of City Planning
(jason.mccrea@lacity.org) – *via email only*

ENCLOSURE: REPORT FROM WSP

January 14, 2026

Via email: ed.casey@alston.com

Mr. Ed Casey
Alston & Bird LLP
350 South Grand Avenue, 51st Floor
Los Angeles, California 90071

Regarding: Barry Building (11973 San Vicente Boulevard, Los Angeles, CA 90049)
Opponent Expert's Report review

Dear Mr. Casey,

Per your request, we have reviewed Observation Letter by Alpha Structural Inc, dated November 15.2025, regarding the Barry Building located at 11973 San Vicente Boulevard, Los Angeles, CA 90049. (Reference Exhibit A)

After completing our review of the document referenced above, we have the following comments:

1. Alpha Structural opinions were based only on visual observations made from the distance during site visit on November 12th, 2025. Existing structural drawings were not available for their review. Therefore, a complete structural analysis was not performed (which cannot be based solely on observations from a distance of a building surrounded by a protective fencing).

- This letter has been prepared for Bob Blue, as a follow-up to our site visit on November 12th, 2025, and summarizes the findings of our visit.
- This letter is limited to the confirmation of mandatory retrofitting upgrades and preliminary potential costs (soft story seismic retrofitting) and is not intended to analyze the overall ability of the structure(s) to withstand future loading conditions. It should also be noted that this site visit did not include a review of original or renovation structural plans, or the benefit of a current subsurface investigation (soils report), as they were not made available. The observation was conducted on a visual basis, and no instruments were used to measure plumb or level conditions of floors or walls.

OBSERVATIONS:

- At the time of observation, the building was enclosed with temporary fences and inaccessible and only visible from the location of the enclosure fences. As a result, visibility was limited, primarily at the courtyard and northerly rear of the building.

2. Alpha Structural only references the Englekirk letter report dated June 1, 2021, but not the letter report dated June 3 and a **complete report/analysis** dated June 6,2022. The purpose of studies that were done by Russell and proposed retrofit were addressing overall structural deficiencies in the lateral system of the existing structure and **not just Soft-Story retrofit ordinance** (Reference Exhibit B, C and D)

- A review of a letter prepared by Russell Tanouye of Englekirk Structural Engineers, Inc., dated June 1, 2021, was performed prior to preparing this letter. The purpose of this letter was to provide retrofit schemes to bring the building into compliance with the Soft-Story retrofit ordinance. The general retrofit scheme consists of steel moment frames along the southerly wing as phase one, and strengthening walls via shear walls along the northerly, easterly, and westerly wings as phase two.

3. Alpha Structural's only recommendation was for addressing soft-story at level 1 required by LA Ordinance (partial Phase 1 in Englekirk letter dated June 1 and June 3, 2021) and not the full seismic retrofit (Phase II in Englekirk letter dated June 1 and a **complete report/analysis** dated June 6, 2022) that is needed to bring the building to a safe level for human occupancy

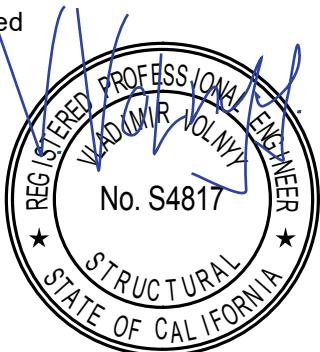
RECOMMENDATIONS:

- A Soft-Story seismic retrofit is recommended. The retrofit is considered a mandatory structural upgrade per the City of Los Angeles Mandatory Retrofitting Ordinance #183893 (Mandatory Standards for Earthquake Hazard Reduction in Existing Wood-Frame Buildings with Soft, Weak, or Open-Front Walls). This would consist of complete seismic analysis to entire building, targeting (4) identifiable soft and/or weak plane on the subject site. The retrofit would consist of implementing lateral resistant systems consisting of multiple special cantilever column systems (SCCS) with drag and shear transfer systems with concrete grade beams. Columns can be designed for offset or replacement columns. Preliminary design accounts for a total of approximately (6) columns to contain both sides of the southerly wing and approximately (4) columns to contain the easterly plane and shear walls/ strong walls will likely be sufficient to contain the northerly plane at the courtyard.
 - Estimated cost approximately, +/- \$14,000. (Engineering and permit expediting.)
 - Estimated cost approximately, +/- \$365,000. (Estimated construction costs are contingent upon final engineered specifications, plans and city requirements. It should be noted that the estimated cost does not include finished cosmetics of any kind as this is to be done by others.)

Conclusions:

Existing building plans for the Barry Building were available to Englekirk. The existing building plans were prepared by Milton Caughey Architect for the "Office and Store Building Mr. David Barry" building. There is no construction date shown on these plans. These plans include Sheets 1 through 8, and include the foundation plan and typical framing sections. Based on the site visit performed on March 27, 2022, the existing building condition generally matched the existing building plans. Some deviations were observed. These deviations include new windows, new doorways, and modified interior demising walls. Those improvements appear to have been created due to various tenant improvement revisions during the life of the building.

As stated in Englekirk **complete report/analysis** dated June 6, 2022, based on our evaluation per the ASCE/SEI 41-13 Tier 1 checklist, the seismic force resisting system of the subject property is generally highly overstressed. The analysis indicates very high demand over capacity ratios for all parts of the existing building. These high ratios indicate that the building is likely to suffer significant damage when subject to a moderate to strong earthquake in the Los Angeles basin. Some portions of the building have no significant seismic resisting elements that can resist the seismic forces from the roof and second floor and can result in a possible collapse when subject to a moderate to strong earthquake. These structural deficiencies represent life safety hazards to occupants in and around the building.


Furthermore, implementing limited seismic retrofit scheme suggested by Alpha Structure to satisfy requirements of Soft-Story LA City Ordinance will not eliminate other structural deficiencies that represent significant life safety hazards.

A substantial portion of the seismic retrofit work identified in the Englekirk reports would still be required. Further, even if the seismic requirements in the California Historical Building Code were applied, a historical building shall be retrofitted to meet 75% of the current building code forces. However, due to the very high level of overstress in the building, 230% to 650% in the structural members, a substantial portion of the work would still be required. Strengthening of existing shear walls and floor/roof plywood diaphragm, additional shear walls and moment frames would still have to be added. (Reference Exhibit E: Barry Building LA Conservancy Comments Review by Englekirk, dated May 25, 2023)

Respectfully submitted

Vladimir Volnyy, SE
Senior Vice President

**Exhibit A – Observation Letter by Alpha Structural
Inc, dated November 15.2025**

OBSERVATION LETTER

Bob Blue
Email: bob.blue@live.com

November 15, 2025

Re: 11973 San Vicente Blvd. Los Angeles CA, 90049

This letter has been prepared for Bob Blue, as a follow-up to our site visit on November 12th, 2025, and summarizes the findings of our visit.

This letter is limited to the confirmation of mandatory retrofitting upgrades and preliminary potential costs (soft story seismic retrofitting) and is not intended to analyze the overall ability of the structure(s) to withstand future loading conditions. It should also be noted that this site visit did not include a review of original or renovation structural plans, or the benefit of a current subsurface investigation (soils report), as they were not made available. The observation was conducted on a visual basis, and no instruments were used to measure plumb or level conditions of floors or walls.

Regardless of opinions stated, written, or implied by any representative of Alpha Structural Inc., no building elements or structure obscured or covered by anything may be commented relied upon in any email, report or Observation Letter issued. This includes but is not limited to floor structures or slabs covered by carpeting or any floor covering, retaining walls covered by foliage, pools filled with water, etc. If comment is requested of us, please have these areas exposed entirely for observation.

Rough estimates were requested for the various repair options. It should be noted that these estimates are given on a "plus or minus" basis and are not actual bids. In order to acquire an exact price, an option would need to be chosen, and an accurate bid undertaken in order to ascertain the price therein.

GENERAL:

- The subject property is an 13,301 sq. ft. (approximately) two-story commercial office building originally built in 1951 according to the Los Angeles County Assessor records.
- The building is located on a relatively flat pad.
- The building is constructed on a concrete slab on grade foundation system and is separated by a courtyard in the center of the building with four wings along the northerly, southerly, easterly and westerly sides of the building. The southerly wing of the building is almost entirely open on the first level, and the above framing is supported by a series of pipe columns that support the above beams and floor framing.
- A review of a letter prepared by Russell Tanouye of Englekirk Structural Engineers, Inc., dated June 1, 2021, was performed prior to preparing this letter. The purpose of this letter was to provide retrofit schemes to bring the building into compliance with the Soft-Story retrofit ordinance. The general retrofit scheme consists of steel moment frames along the southerly wing as phase one, and strengthening walls via shear walls along the northerly, easterly, and westerly wings as phase two.

- A search into City of Los Angeles LADBS online services specifies that this building does fall into the Soft-Story retrofit program with an order to comply (OTC) date of 3/1/2018. <https://www.ladbservices2.lacity.org/OnlineServices/?service=plr>

OBSERVATIONS:

- At the time of observation, the building was enclosed with temporary fences and inaccessible and only visible from the location of the enclosure fences. As a result, visibility was limited, primarily at the courtyard and northerly rear of the building.
- It was observed that both sides of the southerly wing of the building are generally open below, with pipe columns that support the above beams and floor system. This area of the structure appears to have a soft story condition. A soft story is when office/ living space occurs over a soft or weak plane.
- The easterly plane of building appears to also have a soft or weak condition as most of the wall line below appears to consist of covered openings. Photos provided by client, dated June 2015 does verify that the currently boarded up exterior walls consist of storefront/ window openings.
- The northerly plane of the building within the courtyard appears to possibly have a soft or weak plane.
- The northerly rear appears to not have a soft story condition based on limited observation, although it will need to be confirmed during the engineering and exploration phase to visually confirm all openings occurring along the lower and upper levels. Photos provided by the client provide insight to the northeasterly section/ corner of the building, however the northwesterly corner will still need to be confirmed.

RECOMMENDATIONS:

- A Soft-Story seismic retrofit is recommended. The retrofit is considered a mandatory structural upgrade per the City of Los Angeles Mandatory Retrofitting Ordinance #183893 (Mandatory Standards for Earthquake Hazard Reduction in Existing Wood-Frame Buildings with Soft, Weak, or Open-Front Walls). This would consist of complete seismic analysis to entire building, targeting (4) identifiable soft and/ or weak plane on the subject site. The retrofit would consist of implementing lateral resistant systems consisting of multiple special cantilever column systems (SCCS) with drag and shear transfer systems with concrete grade beams. Columns can be designed for offset or replacement columns. Preliminary design accounts for a total of approximately (6) columns to contain both sides of the southerly wing and approximately (4) columns to contain the easterly plane and shear walls/ strong walls will likely be sufficient to contain the northerly plane at the courtyard.
 - Estimated cost approximately, +/- \$14,000. (Engineering and permit expediting.)
 - Estimated cost approximately, +/- \$365,000. (Estimated construction costs are contingent upon final engineered specifications, plans and city requirements. It should be noted that the estimated cost does not include finished cosmetics of any kind as this is to be done by others.)

Thank you for the opportunity to be of service. Should you or any of your authorized agents have any questions, please feel free to call or email anytime.

Sincerely,

Albert Biskalis

Alpha Structural, Inc.

General Engineering Contractors – Structural Engineers

CSLB License #663409 – Class A, B, C-8

Mobile: 323-927-2615

Office: 323-258-5482

Email: albert@alphastructural.com

O: 323-258-5482
F: 323-344-9366

alphastructural.com
info@alphastructural.com

8334 Foothill Blvd.
Sunland, CA 91040

BACKGROUND & EXPERIENCE INFORMATION
Alpha Structural, Inc

BACKGROUND & EXPERIENCE of Albert Biskalis, provided by:

Albert Biskalis, VP DEVELOPMENT and Structural Assessor

Mr. Biskalis has approximately 18 years of structural design/ drafting and has an Associates of Science degree in CAD Drafting/ Design. Five of those years operating in Alpha Structural' s engineering department and 3 years as a Structural Assessor. He has helped develop many soft story plans with Alpha Structural' s engineering department. HIS Registration number is 144101 SP. This license is held under Alpha Structural' s contractor license #66340

BACKGROUND & EXPERIENCE OF COMPANY

The information below is available on Alpha Structural's Website:

<https://www.alphastructural.com>

Servicing Los Angeles County, Orange County, Ventura County and Santa Barbara County

For over 30 years, Alpha Structural, Inc. has developed a powerful reputation as the **#1 Design/Build firm in Los Angeles and surrounding counties**. With over 850 years of combined professional experience in our engineering department alone, we can design any and all of your structural repairs and upgrades, in addition to building them. Whether it's a single-family home, a multi-family apartment building or a commercial building, we engineer and build ANY needed repairs to keep your building safe.

Source: <https://www.alphastructural.com/>

BACKGROUND & EXPERIENCE INFORMATION
Alpha Structural, Inc
For "Observation Letter" dated November 15, 2025

The Only One to Engineer & Build

We're the **ONLY Los Angeles foundation repair company** licensed to **ENGINEER** and **BUILD** any type of repair project. Whether it's a **residential, multi-family, commercial or industrial property**, we can do any structural or geotechnical repair required. You'll work with us through the whole project, not unknown sub-contractors that you didn't hire and cannot control or predict. We can custom design the exact right solutions for you and your budget, whatever that is. We'll help you to find the right balance of achieving your goal and cost.

Soft Story Retrofitting Los Angeles

At Alpha Structural, we specialize in comprehensive **soft story retrofitting**, offering tailored solutions that meet compliance requirements while ensuring long-term structural stability. With decades of experience in *seismic retrofitting and foundation repair*, we provide property owners with expert guidance, cost-effective engineering, and seamless execution from start to finish. If your building falls under the city's retrofitting ordinance, now is the time to take action. Strengthen your property before the next earthquake strikes.

**Exhibit B – Englekirk Letter by Russell Tanouye,
dated June 1, 2021**

June 1, 2021

via email: greg.berlin@alston.com

Mr. Greg Berlin
 Alston & Bird
 333 South Hope Street, 16th Floor
 Los Angeles, California 90071

Regarding: 11971 San Vicente Boulevard – Retrofit Schemes
 Englekirk Job No. 21-L023

888 S. Figueroa Street
 18th Floor
 Los Angeles, CA 90017

323.733.6673 T

www.englekirk.com

Los Angeles
 Orange County
 Honolulu

Dear Mr. Berlin:

This letter summarizes the structural analysis work that you have requested we perform for the above noted building. You have requested that we perform a structural analysis to repair the building to conform to the City of Los Angeles Soft Story Ordinance (Ordinance No. 183893). We were also requested to provide structural sketches that convey the structural work required to conform to this ordinance. This work is identified as a Phase I level repair work. For a Phase II level repair work, we were to develop structural sketches that will conform to ASCE 41-13 level of repair using the Basic Service Earthquake – 1E (BSE-1E) as the design criterion.

Existing Building Description

The existing building is a two-story wood framed structure. The floor plan is 100' x 107' with an open 43' x 56' courtyard. The courtyard essentially separates the building into four wings. The north and south wings at the second floor and roof are raised by about 1'-6" from the east and west wings. This essentially creates four separate structural building elements with no common floor or roof diaphragm.

The first floor consists of a 4" concrete slab-on-grade. The second-floor system consists of a 2" diagonal sheathed wood floor supported by sawn lumber joists. The roof system consists of 1" diagonal sheathing supported by sawn lumber joists. Both the floor and roof levels have a ceiling. Typical bearing walls are 2x4 studs. The story height is about 12' at the first floor and 11'-6" at the second floor.

The lateral bracing for this building consists of the horizontal floor and roof diaphragms and the perimeter vertical shear walls. The second floor and roof consist of diagonal sheathing. The nailing pattern for the sheathing is unknown. This diagonal sheathed floor and roof diaphragm span to the exterior perimeter walls. These exterior walls serve as the vertical shear walls that brace this building. The interior demising walls do not form a complete lateral bracing system as they are discontinuous between floors, and several of these walls have been removed and the wall locations are irregularly distributed.

The foundation system consists of continuous and spread footings that bear on the foundation soil. The plans note that the design bearing pressure is 2,000 psf. The bearing walls are founded on an 8" continuous stem wall which is then supported on a 16" wide x 8" deep continuous footing.

The south wing that faces San Vicente Boulevard utilizes a pass-through at the ground floor that accesses the interior courtyard. As a result, there are no bearing walls that extend to the foundation. Instead, the second floor is supported on a series of steel columns. There are some exterior walls on the eastern side, but they are discontinuous between floors.

Phase I – City of Los Angeles Soft Story Ordinance

We have reviewed the Ordinance and have determined that this ordinance will apply to the building south wing as there is no ascertainable lateral system. The wing is supported on isolated steel columns. Therefore, we have developed a seismic retrofit solution that addresses this building portion only. The

Tony Ghodsi, PE, SE
 Lawrence Y. Ho, PE, SE
 Michael K. Kawahara, PE, SE
 Christopher Rosien
 Thomas A. Sabol, PhD, PE, SE
 Russell Tanouye, PE, SE, LEED AP
 Vladimir A. Volnyy, PE, SE
 Ety Benichou, PE, SE
 Mahmoud Faghili, PE, SE
 Zen Hoda, PE, SE
 Kimberly Hoo, PE, SE
 Diana Erickson Nishi, PE, SE
 Reid Nishimura, PE, SE
 Al Ikemura
 Thomas Y. Nishi, PE, SE
 Daniel Chan, PE, SE, LEED AP
 Mohamed Hassan, PhD, PE, SE
 Mitchel Le Heux, PE, SE
 Katherlin Lee Choi
 Milton S. Shiosaki
 Daniel W. Shubin
 Edward Silver, PE, SE
 Kimberly F. Tanouye

Ordinance stipulates a seismic design force level of 75% of the current California Building Code. Additionally, because of the historic nature of the building, a structural solution that minimizes the architectural impacts on the building was selected.

The seismic retrofit scheme consists of steel moment frame structures that are located within the building and are supported on new concrete footings. These steel moment frame structures provide lateral bracing for this south wing. In addition, there are some new wood shear walls that are placed to minimize architectural impact on the building. New footings are added, and the first floor, second floor and roof diaphragms are added and strengthened.

This scheme is depicted in the attached sketches.

Phase II – ASCE 41-13 Retrofit

This scheme delineates the structural retrofit work that is needed beyond the Phase I work described above. This work includes the work to the north, east and west wings that are not retrofitted in the Phase I scheme.

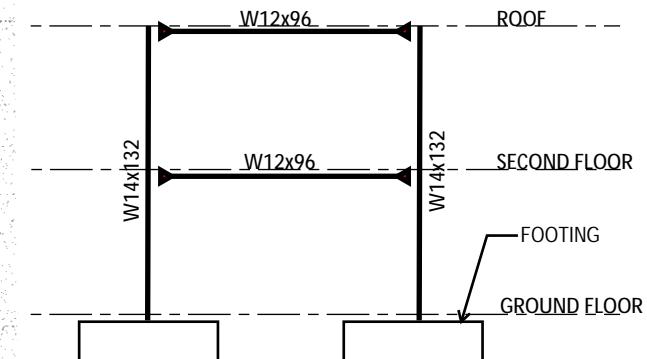
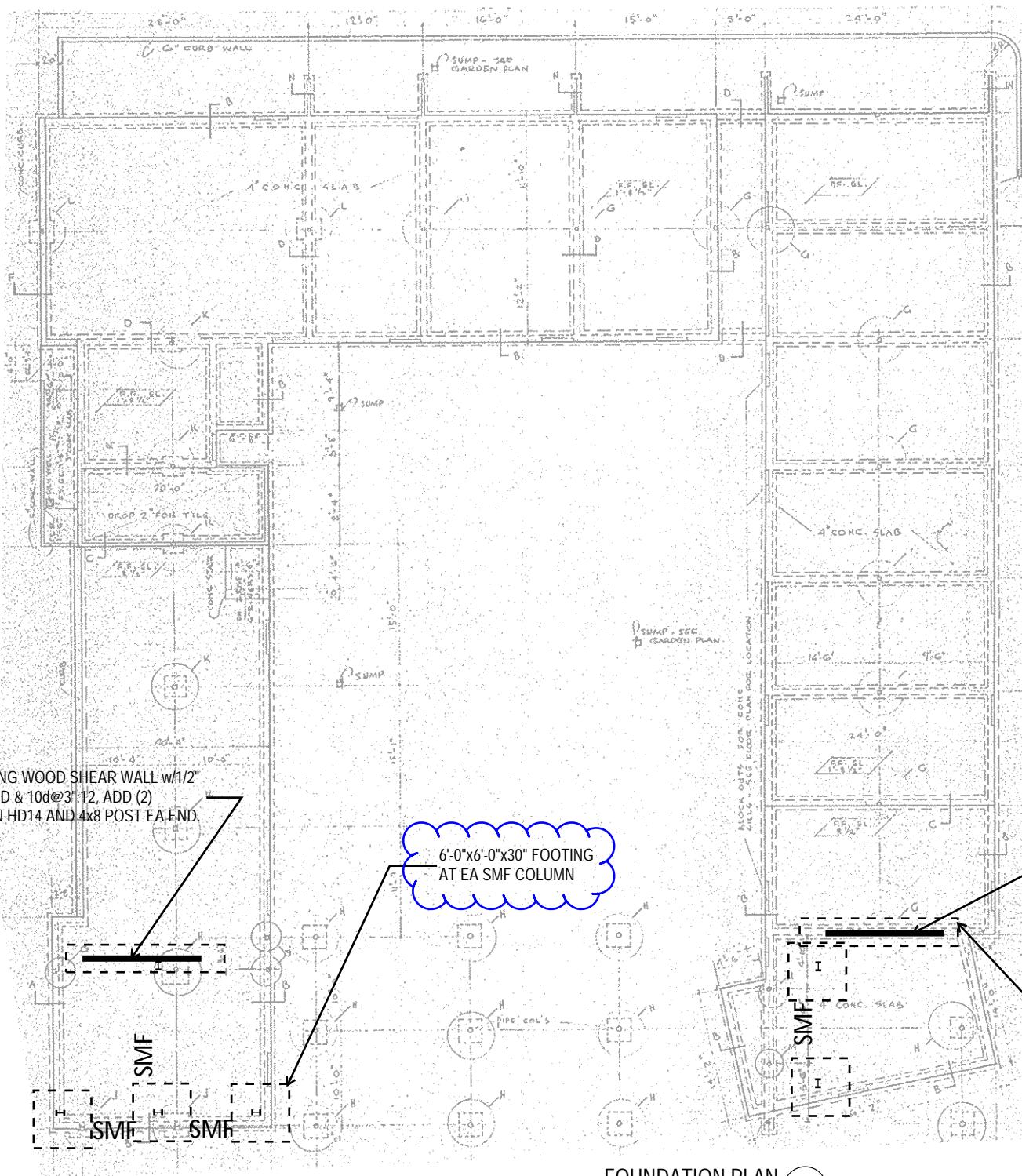
The seismic retrofit scheme consists of new and strengthened wood shear walls that are sheathed with 12" plywood sheathing and wall anchors. There are new foundations to support the seismic loads resisted by the new shear walls. These walls are distributed throughout the wings. The locations of these walls are general in nature and can be located more precisely in the future. The first floor, second floor and roof diaphragms are added and strengthened.

This scheme is depicted in the attached sketches.

Summary

The two schemes presented are conceptual in nature and do not represent final construction repair plans. These plans can be used to develop conceptual budgeting pricing only for the seismic related retrofit work. Additional non-structural costs such as American with Disabilities (ADA) compliance, MEP relocation, construction sequencing, etc. should be reviewed and assessed by a qualified Contractor or Cost Estimator.

Respectfully submitted,



Russell Tanouye, PE, SE, LEED AP
Principal

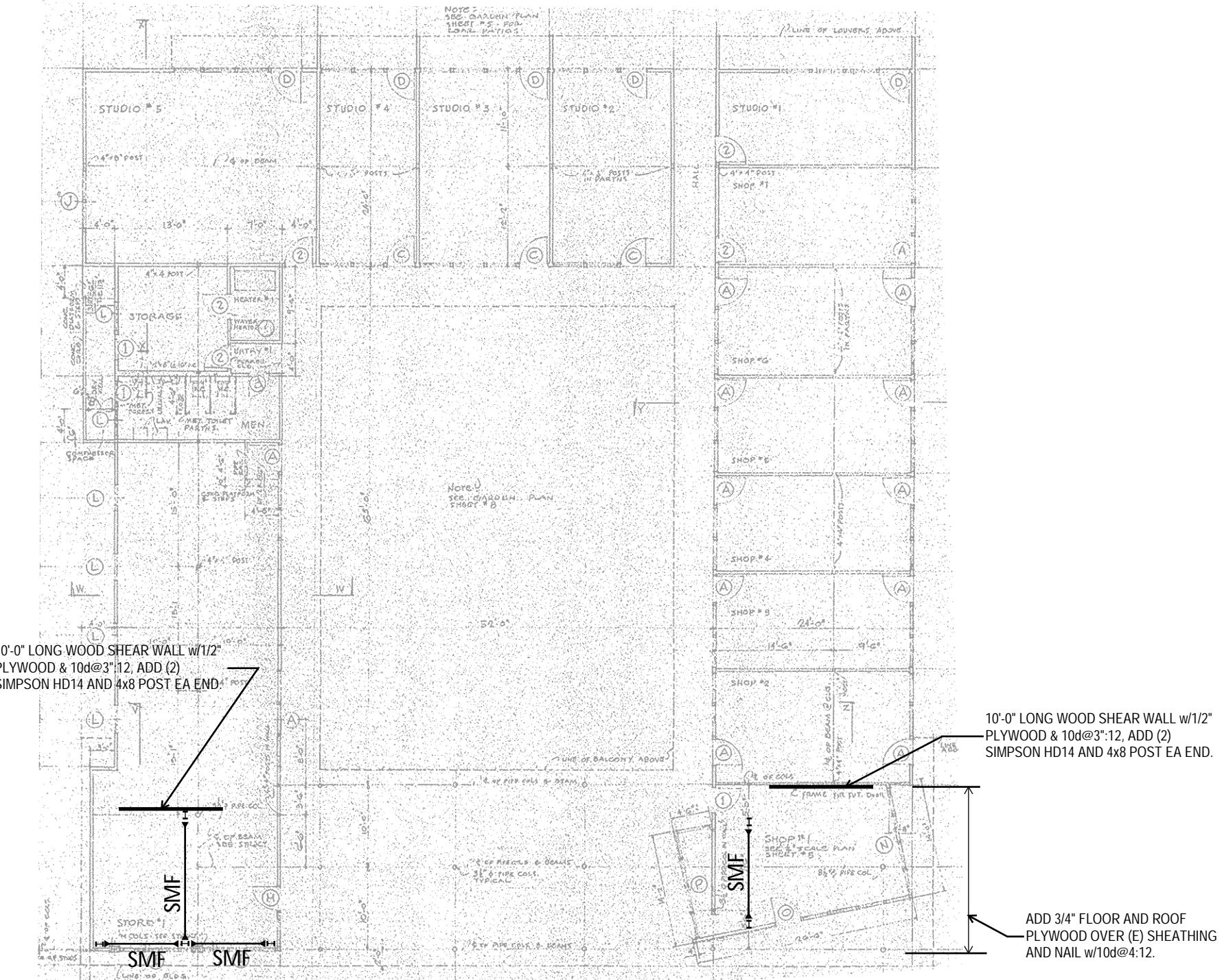
06/01/2021

RT:gh

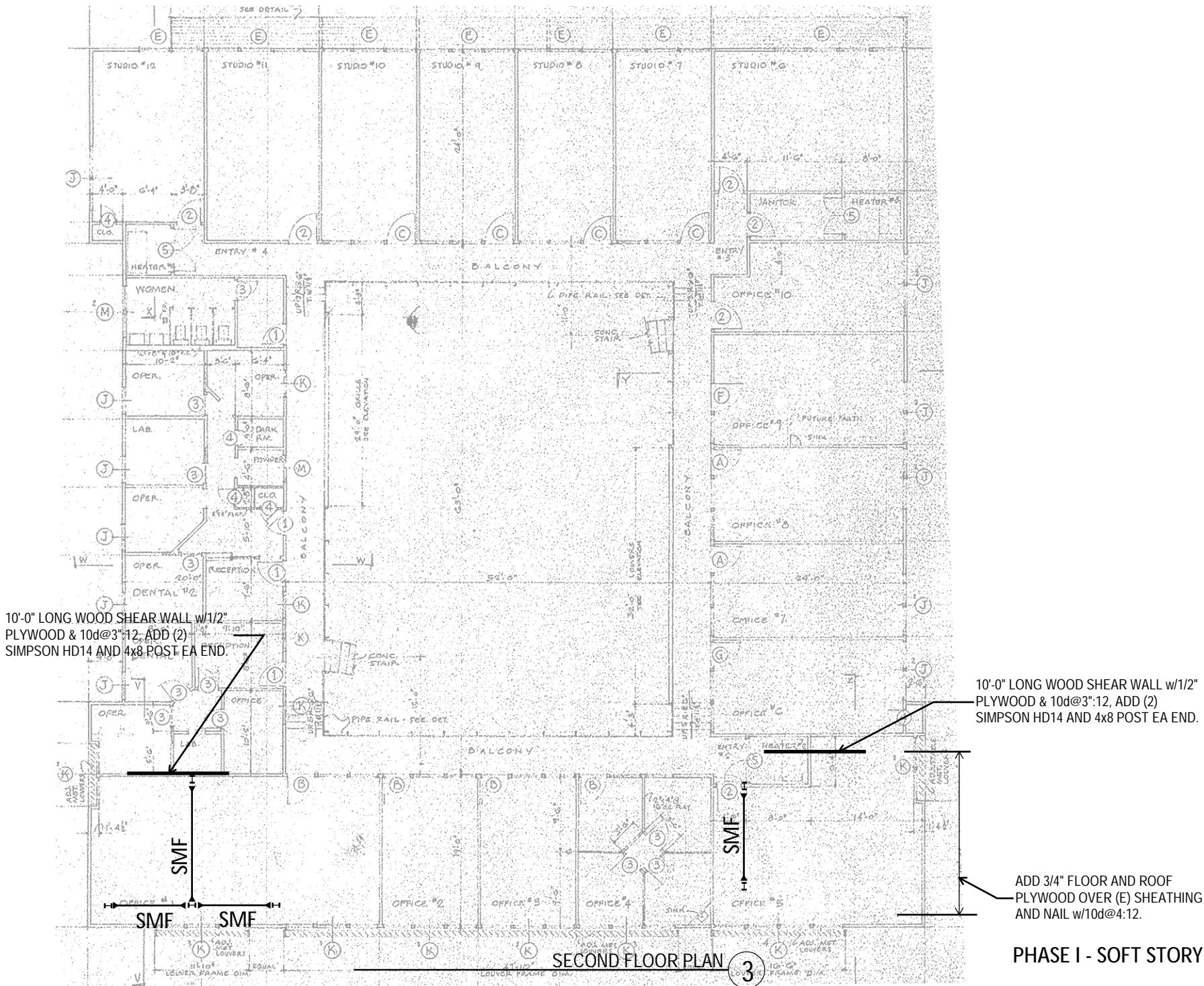
Attachments

SMF ELEVATION

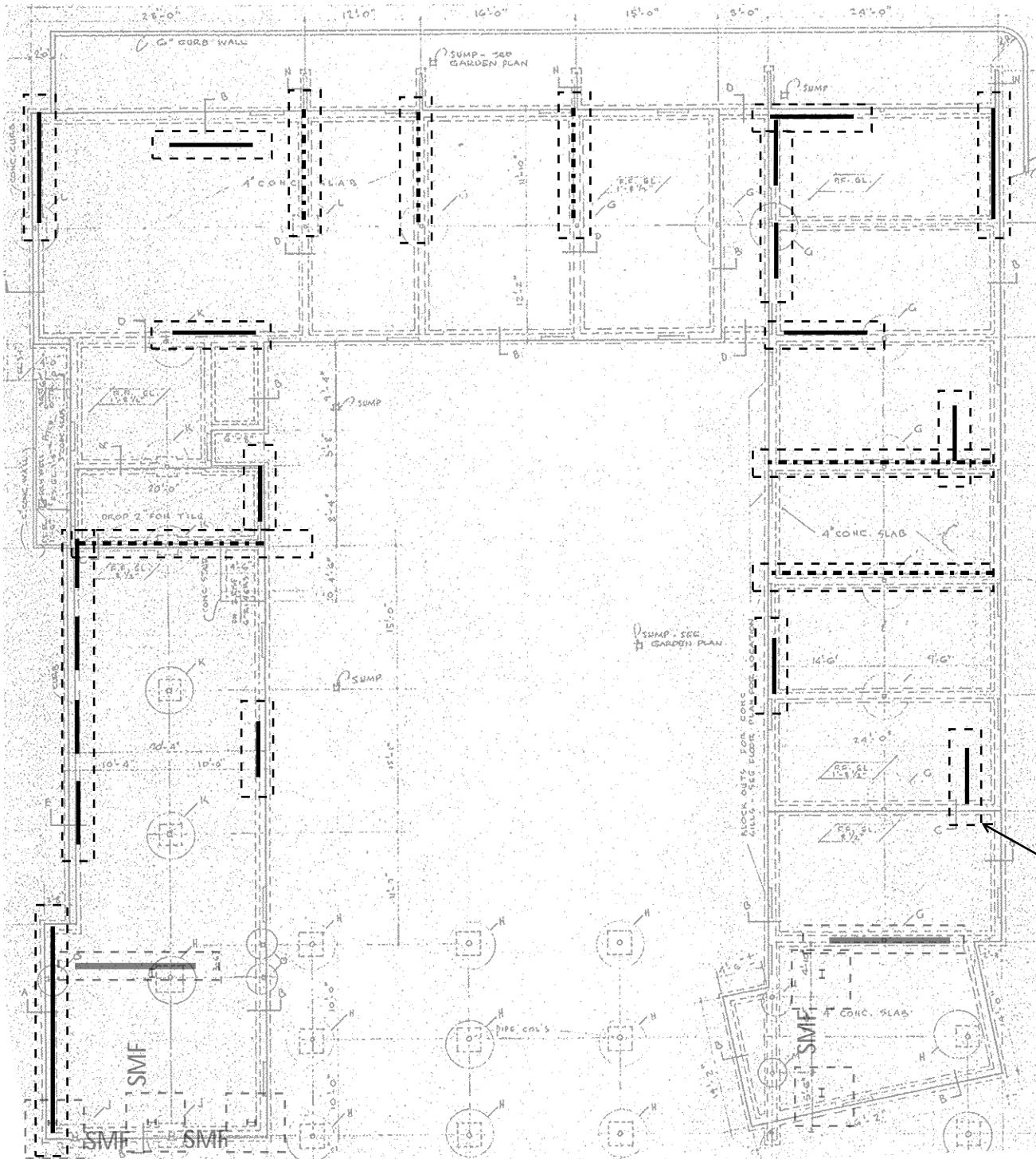
10'-0" LONG WOOD SHEAR WALL w/1/2"
PLYWOOD & 10d@3":12, ADD (2)
SIMPSON HD14 AND 4x8 POST EA.END


6'-0" x 6'-0" x 30" FOOTING
AT EA SMF COLUMN

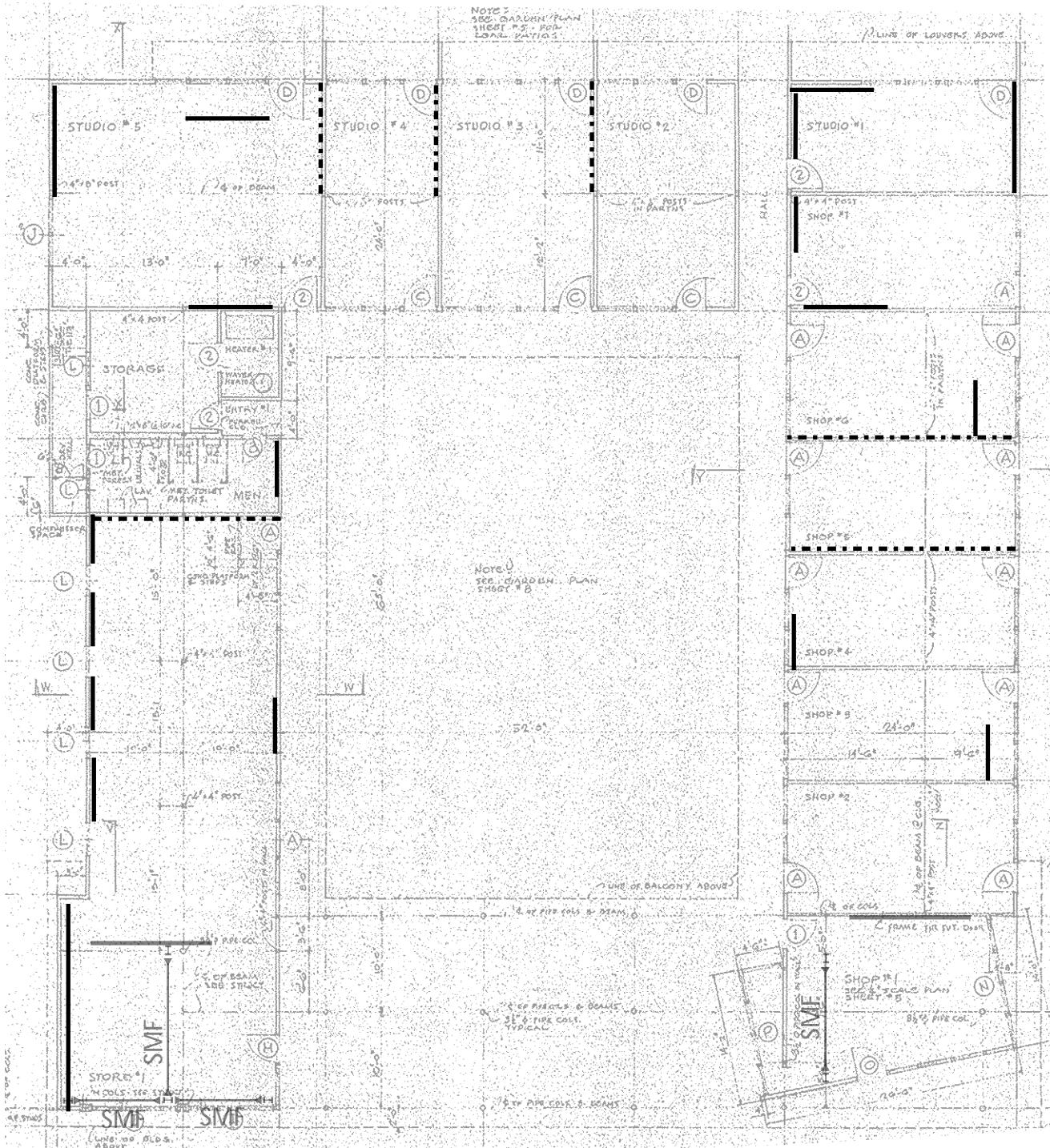
SMF


三

10'-0" LONG WOOD SHEAR WALL w/1/2"
— PLYWOOD & 10d@3":12, ADD (2)
SIMPSON HD14 AND 4x8 POST EA END.

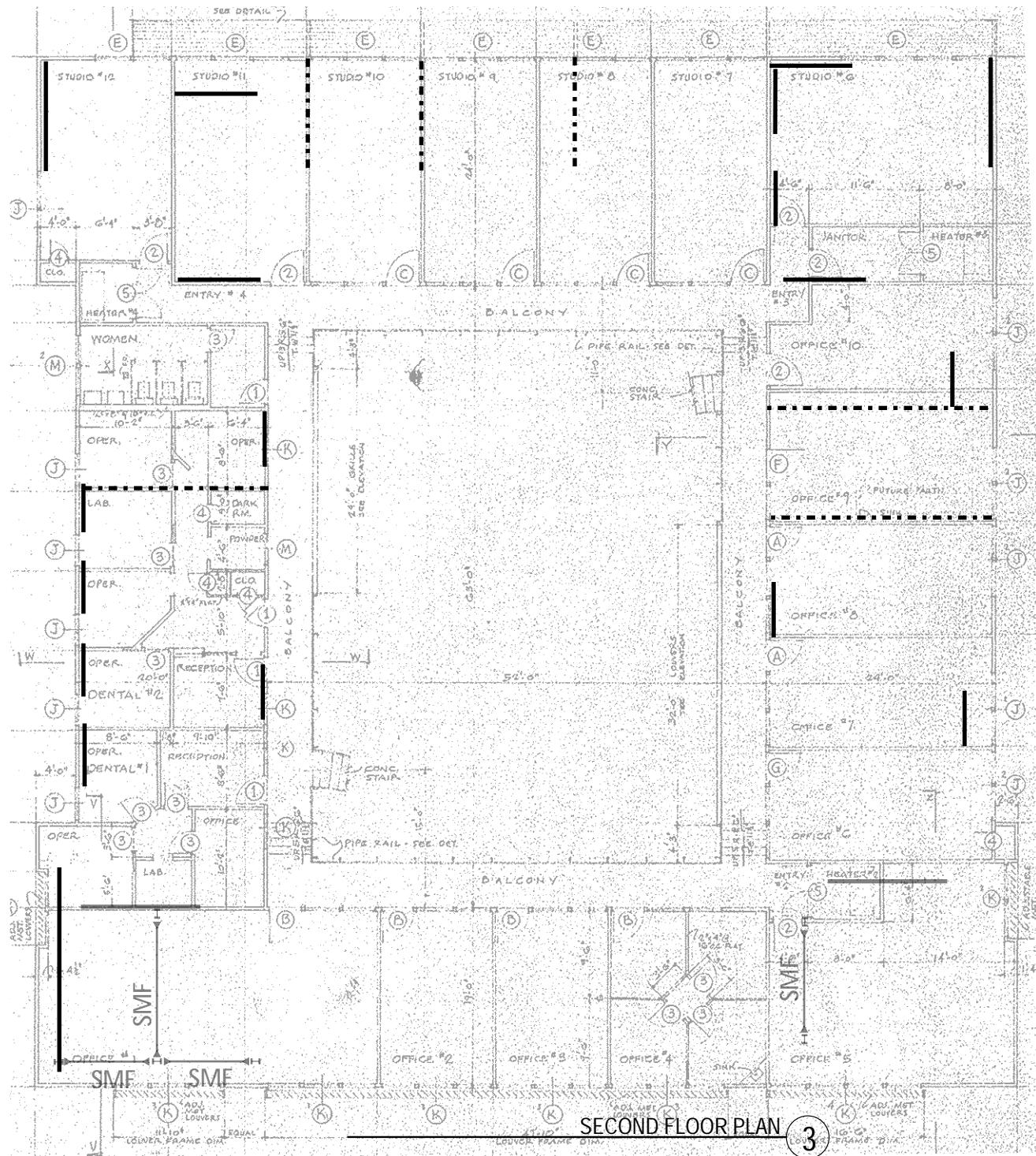

3'-0" x 30" FOOTING AT EA
WOOD SHEAR WALL

FIRST FLOOR PLAN


PHASE I - SOFT STORY RETROFIT

10'-0" LONG WOOD SHEAR
WALL w/1/2" PLYWOOD &
10d@3":12, ADD (2) SIMPSON
HD14 AND 4x8 POST EA END.

----- STRENGTHEN (E) WOOD SHEAR
WALL w/1/2" PLYWOOD &
10d@3":12, ADD (2) SIMPSON
HD14 AND 4x8 POST EA END.


3'-0" x 30" FOOTING AT EA
WOOD SHEAR WALL

10'-0" LONG WOOD SHEAR
WALL w/1/2" PLYWOOD &
10d@3":12, ADD (2) SIMPSON
HD14 AND 4x8 POST EA END.

----- STRENGTHEN (E) WOOD SHEAR
WALL w/1/2" PLYWOOD &
10d@3":12, ADD (2) SIMPSON
HD14 AND 4x8 POST EA END.

TYPICAL AT ALL FLOOR AND ROOF:
ADD 3/4" FLOOR AND ROOF PLYWOOD
OVER (E) SHEATHING AND NAIL
w/10d@4:12.

10'-0" LONG WOOD SHEAR WALL w/1/2" PLYWOOD & 10d@3":12, ADD (2) SIMPSON HD14 AND 4x8 POST EA END.

----- STRENGTHEN (E) WOOD SHEAR WALL w/1/2" PLYWOOD & 10d@3":12, ADD (2) SIMPSON HD14 AND 4x8 POST EA END.

TYPICAL AT ALL FLOOR AND ROOF:
ADD 3/4" FLOOR AND ROOF PLYWOOD
OVER (E) SHEATHING AND NAIL
w/10d@4:12.

**Exhibit C – Englekirk Letter by Russell Tanouye,
dated June 3, 2021**

June 1, 2021
Revised June 3, 2022

via email: greg.berlin@alston.com

Mr. Greg Berlin
Alston & Bird
333 South Hope Street, 16th Floor
Los Angeles, California 90071

Regarding: 11971 San Vicente Boulevard – Retrofit Schemes
Englekirk Job No. 21-L023

Dear Mr. Berlin:

We have prepared a report letter dated May 26, 2021 that developed a recommended structural retrofit to meet the Los Angeles City Soft Story Ordinance (Ordinance No. 183893). This recommended structural retrofit only addresses the structural deficiencies in the south wing. This ordinance is limited to this building portion as there is no ascertainable lateral system (commonly referred to as the "soft story") and the second and roof levels are supported on the ground level isolated steel columns. The Soft Story Ordinance does not apply to the east, north or west wing structural deficiencies, which are identified in my May 26 report, because these wings do not have a "soft story." Thus, the ordinance does not mandate a retrofit for these wings.

Accordingly, it is our professional opinion that even with the implementation of the Soft Story Ordinance structural retrofit, the remaining building wings will not be structurally retrofitted and will not be sufficient to protect building occupants if the building was subject to a moderate to severe seismic event in the LA Basin.

Respectfully submitted,

Russell Tanouye, PE, SE, LEED AP
Principal

Russell Tanouye, PE, SE, LEED AP
Principal

RT:gh

888 S. Figueroa Street
18th Floor
Los Angeles, CA 90017

323.733.6673 T

Los Angeles
Orange County
Honolulu

Tony Ghosi, PE, SE
Lawrence Y. Ho, PE, SE
Michael K. Kawahara, PE, SE
Christopher Rosien
Thomas A. Sabol, PhD, PE, SE
Russell Tanouye, PE, SE, LEED AP
Vladimir A. Volnyy, PE, SE
Ety Benichou, PE, SE
Mohamed Hassan, PhD, PE, SE
Mahmoud Faghghi, PE, SE
Zen Hoda, PE, SE
Kimberly Hoo, PE, SE
Diana Erickson Nishi, PE, SE
Reid Nishimura, PE, SE
Al Ikemura
Thomas Y. Nishi, PE, SE
Daniel Chan, PE, SE, LEED AP
Mitchel Le Heux, PE, SE
Katherlin Lee Choi
Milton S. Shiosaki
Daniel W. Shubin
Edward Silver, PE, SE
Kimberly F. Tanouye

**Exhibit D – Englekirk Complete Seismic Assessment
Report , dated June 6, 2022**

11973 San Vicente Boulevard

ASCE 41-13 Seismic Assessment

Los Angeles, California

June 6, 2022

Job No. 12-L038B

11973 San Vicente Boulevard

ASCE 41-13 Seismic Assessment

Los Angeles, California

Submitted to:
Alston & Bird LLP
333 South Hope Street
16th Floor
Los Angeles, CA 90071
(213) 576-2526
Attn: Mr. Greg Berlin

June 6, 2022

Job No. 12-L038B

 Englekirk

STRUCTURAL ENGINEERS

888 S. Figueroa Street
18th Floor
Los Angeles, CA 90017

323.733.6673 T
323.733.8682 F

www.englekirk.com

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Information Reviewed	1
3.0	Building Structural Design	1
4.0	Seismicity	2
4.1	Ground Motion Estimates for Seismic Review (ASCE 41-13)	2
4.2	Seismic or Geotechnical Hazards	2
5.0	Seismic Evaluation Summary	3
5.1	ASCE 41-13 Tier 1	3
6.0	Voluntary Seismic Evaluation	4
6.1	North Wing	5
6.2	East Wing	5
6.3	South Wing	5
6.4	West Wing	5
6.5	Typical Existing Roof and Floor Diaphragm	5
7.0	Voluntary Seismic Retrofit Scheme	6
7.1	Strengthening the Existing Shear Wall	6
8.0	Conclusions	6

Appendix A – Tier 1 Checklists

1.0 INTRODUCTION

This report summarizes findings of the Seismic assessment per ASCE 41-13 (Tier 1) for the existing building located at 11973 San Vicente Boulevard. A seismic retrofit scheme was also developed for the report, based on ASCE 41-13.

This building is also considered a Historical Building and thus can be considered to be subject to the 2016 California Historical Building Code.

2.0 INFORMATION REVIEWED

Existing building plans were provided to our office. The existing building plans were prepared by Milton Caughey Architect for the "Office and Store Building Mr. David Barry" building. There is no construction date shown on these plans. These plans include Sheets 1 through 8, and include the foundation plan and typical framing sections. Based on the site visit performed on March 27, 2012, the existing building condition generally matched the existing building plans. Some discrepancies were observed. These discrepancies include new windows, new doorways, and modified interior demising walls. These discrepancies appear to have been created due to various tenant improvement revisions during the life of the building. This report was performed as an observation of the visible portions of the building and based on the available drawings. No destructive testing was performed.

3.0 BUILDING STRUCTURAL DESCRIPTION

The existing building is a two-story wood framed structure. The floor plan is 100' x 107' with an open 43' x 56' courtyard. The courtyard essentially separates the building into four wings. The north and south wings at the second floor and roof are raised by about 1'-6" from the east and west wings. This essentially creates four separate structural building elements with no common floor or roof diaphragm.

The first floor consists of a 4" concrete slab on grade. The second floor system consists of a 2" diagonal sheathed wood floor supported by sawn lumber joists. The roof system consists of 1" diagonal sheathing supported by sawn lumber joists. Both the floor and roof levels have a ceiling. Typical bearing walls are 2x4 studs. The story height is about 12' at the first floor and 11'-6" at the second floor.

The lateral bracing for this building consists of the horizontal floor and roof diaphragms and the perimeter vertical shear walls. The second floor and roof consist of diagonal sheathing. The nailing pattern for the

sheathing is unknown. This diagonal sheathed floor and roof diaphragm span to the exterior perimeter walls. These exterior walls serve as the vertical shear walls that brace this building. The interior demising walls do not form a complete lateral bracing system as they are discontinuous between floors, and several of these walls have been removed and the wall locations are irregularly distributed.

The foundation system consists of continuous and spread footings that bear on the foundation soil. The plans note that the design bearing pressure is 2,000 psf. The bearing walls are founded on an 8" continuous stem wall which is then supported on a 16" wide x 8" deep continuous footing.

The south wing that faces San Vicente Boulevard utilizes a pass-through at the ground floor that accesses the interior courtyard. As a result, there are no bearing walls that extend to the foundation. Instead, the second floor is supported on a series of steel columns. There are some exterior walls on the eastern side, but they are discontinuous between floors.

4.0 SEISMICITY

4.1 Ground Motion Estimates for Seismic Review (ASCE 41-13)

A geotechnical report was not provided for review. Site geotechnical conditions were assumed to be consistent with Site Class D. The spectral accelerations were obtained from probabilistic hazard mapping software developed by the United States Geological Survey (USGS).

Spectral accelerations were obtained from the USGS for the Basic Safety Earthquake-1E (BSE-1E) hazard level. The BSE-1E hazard level corresponds to an earthquake with an average return period of 225 years or 20% probability of exceedance in 50 years. BSE-1E spectral accelerations are used to evaluate the level of seismicity of the site as required for the Tier 1 Checklist. The ordinates are illustrated in Figure 4.1.

Based on the 0.2 second and 1.0 second spectral accelerations, in accordance with ASCE 41 Table 2-4, the level of seismicity at this site is defined as High. This classification determines the ASCE 41-13 structural checklists required for use in evaluating the building.

4.2 Seismic or Geotechnical Hazards

The state of California has issued a set of regulatory maps detailing regions of potential liquefaction, landside and ground fault rupture. This site is in the Beverly Hills Quadrangle, as shown in Figure 4.2. Areas shown in white have not been identified as locations of potential liquefaction, landside or ground

fault rupture. The map indicates that the site, shown in Figure 4.2, has not been identified as a potential location for any of these seismic or geotechnical hazards.

5.0 SEISMIC EVALUATION SUMMARY

5.1 ASCE 41-13 Tier 1

The building site is classified as “high seismicity” and in accordance with Tier 1 evaluation requirements, the following checklists were reviewed, and applicable “quick checks” were performed:

- 16.1 Basic Checklist
- 16.1.2LS Life Safety Basic Configuration Checklist
- 16.3LS Life Safety Structural Checklist for Building Type W2: Wood Frames, Commercial and Industrial

A copy of the checklists is found in Appendix A. A summary is provided in Table 5.1 below for items that were found “Non-Compliant” or “Unknown”.

Table 5.1: Summary of Checklist Findings

16.1 Basic Checklist		
Item	Non-Compliant/Unknown	Description
Load Path	Non-Compliant	Discontinuous horizontal diaphragms occur at second floor and roof. Vertical elements of seismic-force-resisting system (such as wood shear walls or frames) were not found at all sides of the perimeter. Interior demising walls do not form a complete seismic-force-resisting system as they are discontinuous between floors.
16.1.2LS Life Safety Basic Configuration Checklist		
Item	Non-Compliant/Unknown	Description
Load Path	Non-Compliant	See 16.1 for Description
Weak Story	Non-Compliant	Vertical discontinuities of seismic-force-resisting system were not found at all sides of the perimeter. Interior demising walls do not form a complete lateral bracing system as they are discontinuous between floors.

Soft Story	Unknown	Stiffness of the seismic-force-resisting system cannot be confirmed, as the seismic-force-resisting system (wood shear walls) are not found at all sides of perimeter, and wood shear walls are found discontinuous between floors.
Vertical Irregularities	Non-Complaint	Vertical elements of seismic-force-resisting system (Wood shear walls) were found discontinuous between floors.
Torsion	Unknown	The story center of rigidity cannot be confirmed.
Overturning		

16.3LS Life Safety Checklist for Building Type W2: Wood Frames, Commercial and Industrial

Item	Non-Compliant/Unknown	Description
Redundancy	Non-Complaint	Vertical discontinuities of seismic-force-resisting system were not found at all sides of the perimeter.
Shear Stress Check	Non-Complaint	The shear stress check provides an assessment of the overall level of demand on the structure. Existing shear walls are found to be overstressed.
Stucco (Exterior Plaster) Shear Wall	Unknown	Plywood sheathing on existing exterior wall shear walls cannot be confirmed. Existing shear walls could be a stucco shear wall
Gypsum Wallboard or Plaster Shear Walls	Non-Complaint	Existing interior demising walls are found to be Gypsum board.
Narrow Wood Shear Walls	Non-Compliant	Existing shear walls were found with an aspect ratio less than 2-to-1.

6.0 VOLUNTARY SEISMIC EVALUATION

Based on the potential deficiencies outlined in Section 5.1, additional analyses were performed to review the elements of the seismic-force-resisting system. Shear stress of shear walls and diaphragms were reviewed. The Basic Safety Earthquake-1E (BSE-1E) hazard level per ASCE/SEI 41-13 was used to determine building element 'demand over capacity ratios' (DCRs). These ratios compare the seismic demand versus the estimated capacity to provide a comparative estimate as to what level these building elements are overstressed. The lateral capacity of existing building elements is based on ASCE 41-13 Table 12-1, "The Default Expected Strength Values for Wood and Light Frame Shear Walls," and Table 12-2, "The Default Expected Strength Values for Wood Diaphragms."

The existing building geometry structurally separates the building into four separate wings. Discontinuities at the second floor and roof occur at each wing interface, thereby creating discontinuous horizontal

diaphragms between each wing. Because they are separate wings, each wing cannot rely on the adjacent wings to resist seismic loads. Therefore, each wing was evaluated individually.

6.1 North Wing

In the north-south direction, roughly 120 feet of existing walls are located, such that they act as lateral resisting elements. In the east-west direction, roughly 42 feet of existing walls are located, such that they act as lateral resisting elements. The DCR for the walls in the north-south direction is 230% overstressed. The DCR for the walls in the east-west direction is 650% overstressed.

6.2 East Wing

In the north-south direction, there is no existing wall located as a lateral resisting element. The exterior wall along grid H and the interior courtyard wall along grid G do not contain structural elements that can be identified as a lateral resisting element. In the east-west direction, roughly 90 feet of existing walls are located as lateral resisting element. The DCR for walls in the north-south direction cannot be determined since no lateral resisting element can be identified. Significant lateral displacement may be expected in the north-south direction of the east wing during a seismic event. The DCR for walls in the east-west direction is 190% overstressed.

6.3 South Wing

There is no existing wall or lateral resisting element to resist seismic loads from the second floor and roof in either the north-south or east-west directions. As a result, significant lateral displacement may be expected during a seismic event. The steel posts that support this wing will be subjected to this potential lateral displacement. Since the steel posts do not possess any lateral resistance, a possible collapse of this wing can result during a seismic event.

6.4 West Wing

In the north-south direction, roughly 50 feet of existing walls are located, such that they act as a lateral resisting element. In the east-west direction, roughly 40 feet of existing walls are located, such that they act as a lateral resisting element. There is no wall located at the south end of the wing. Significant lateral displacement may be expected in the east-west direction during a seismic event. The DCR for the walls in the north-south direction is 360% overstressed. The DCR for the walls in the east-west direction is 400% overstressed.

6.5 Typical Existing Roof and Floor Diaphragm

The DCR for the typical diaphragm at the roof and second floor is highly overstressed. Diaphragm shear stress cannot be determined at areas where vertical seismic-force resisting elements are not found.

7.0 Voluntary Seismic Retrofit Scheme

To conform to the seismic force resisting requirements for a new structure, we propose a seismic retrofit scheme that includes strengthening the existing walls, adding new 2-story shear walls, and new steel moment frames. (See Figure 7.1 for conceptual shear wall and steel moment frame locations)

7.1 Strengthening Existing Shear Wall

The existing shear walls need to be continuous between floors. The strengthening requirements include adding new plywood sheathing and nailing, new hold-down anchors at each end of the wall, new floor to wall connection, and new footing/enhancing for the existing footing.

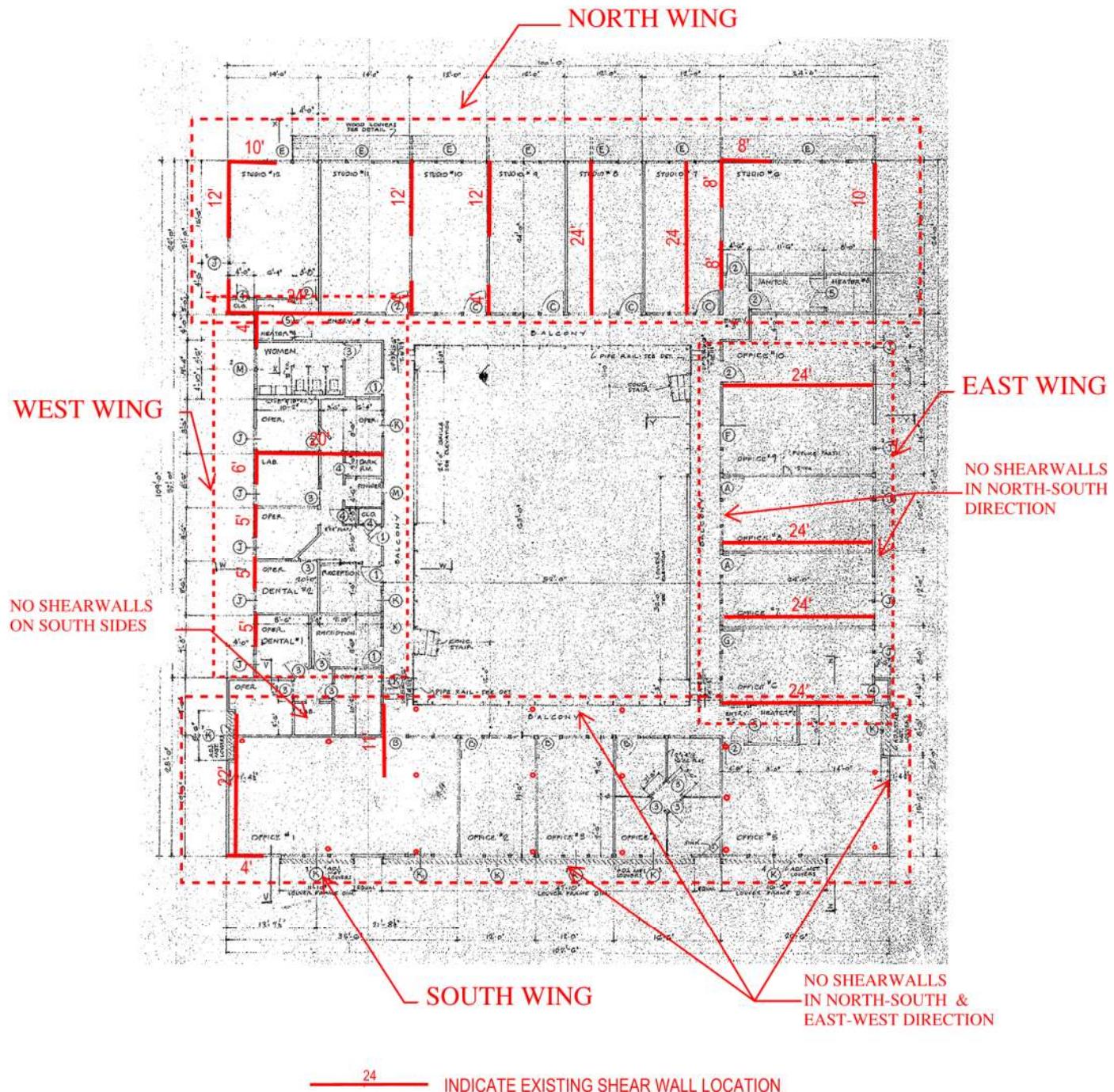
New Shear Wall: New wood shear walls need to be continuous between floors. The new wood shear wall construction includes new 2x stud wall framing, new plywood sheathing and nailing, new hold-down anchors at each end of the wall, and new footing.

New Floor and Roof Diaphragm Sheathing: New $\frac{3}{4}$ " plywood sheathing over the entirety of the existing floor and roof sheathing.

Steel Moment Resisting Frame: Two-story steel moment resisting frames are to be introduced at the south wing where no continuous shear wall may be feasible. The steel moment resisting frames consist of new wide flange steel columns, wide flange steel beams, and new concrete footings.

Consideration for Reducing Impact of Retrofit on Historical Fabric: The above seismic retrofit can be done to minimize the impact on the building historic fabric. The addition of new plywood shear walls can be performed on the inside force of the exterior walls to avoid removing or damage the exterior skin. The new walls can be located to avoid closing any existing historic windows. The new steel moment resisting frames that are located at the front wing can be placed interior to the building footprint. The second floor and roof diaphragm will require enhanced nailing to allow the adjustment of the frame relocations.

Seismic Retrofit Cost: The cost to retrofit the building can vary, depending on the specific repair details, sequencing, and potential unforeseen conditions. We estimate the retrofit cost will be about \$2.0M to \$2.5M. This cost does not include any costs such as possible code required upgrades such as the American Disability Act (ADA), plumbing, mechanical, lighting, etc. Also, the addition of new shear walls may render portions of the building less rentable because of the shear wall obstruction at storefront windows, office windows, etc.


8.0 CONCLUSIONS

Based on our evaluation per the ASCE/SEI 41-13 Tier 1 checklist, the seismic force resisting system of the subject property is generally highly overstressed.

The analysis indicates high demand over capacity ratios for all parts of the existing building. These high ratios indicate that the building is likely to suffer significant damage when subject to a moderate to strong earthquake in the Los Angeles basin. Some portions of the building have no significant seismic resisting elements that can resist the seismic forces from the roof and second floor and can result in a possible collapse when subject to a moderate to strong earthquake. These structural deficiencies represent life safety hazards to occupants in and around the building. The above mentioned seismic retrofits would correct the structural deficiencies identified in this report.

The California Historical Building Code allows an analysis and retrofit to meet 75% of the current building code forces. A direct comparison of this force level to ASCE 41-13 was not performed. However, based on the level of overstress, it is our opinion that the same conclusion and retrofit recommendations will apply.

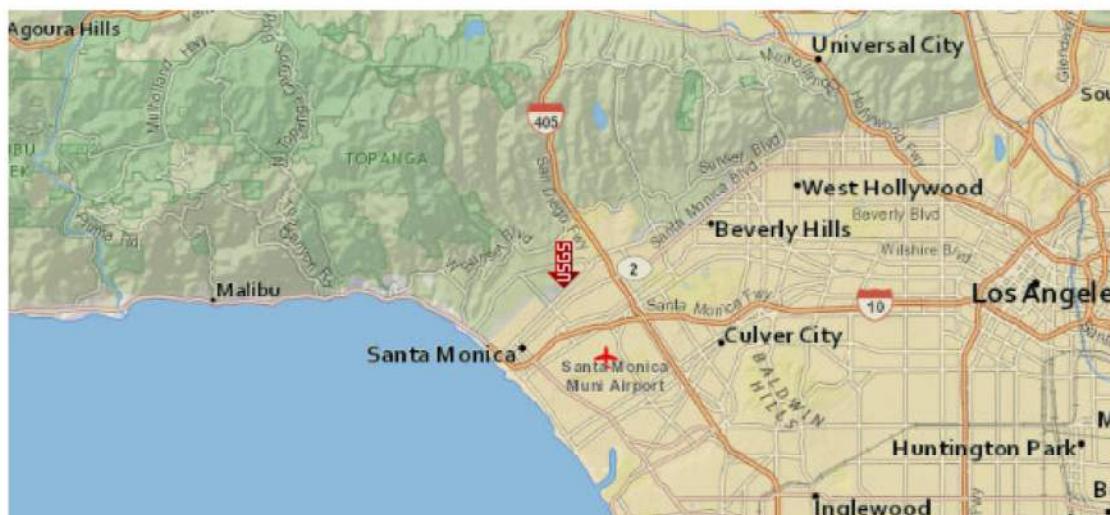
RT:gh

Figure 3.1: Existing Shear Wall Locations

May 26, 2021
Job No. 12-L038B

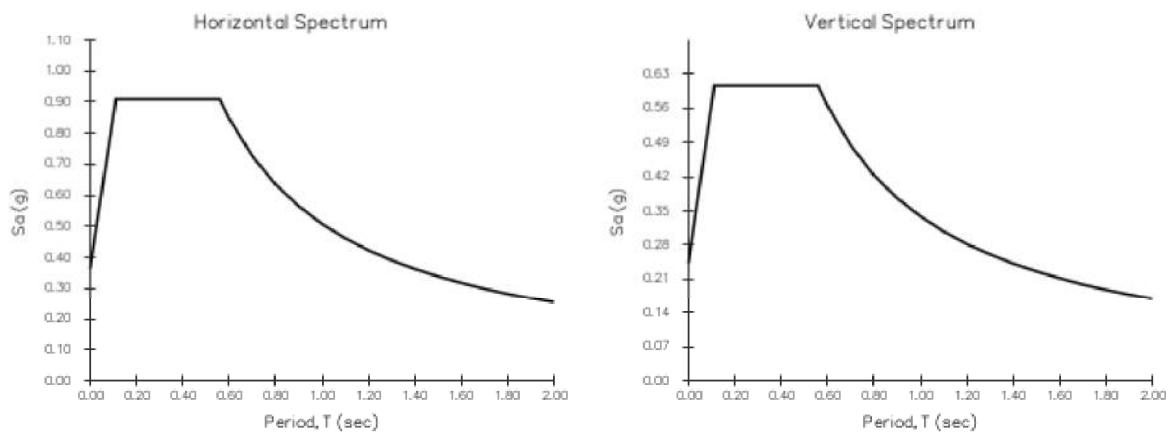
USGS Design Maps Summary Report

User-Specified Input


Report Title 11973 San Vicente Blvd

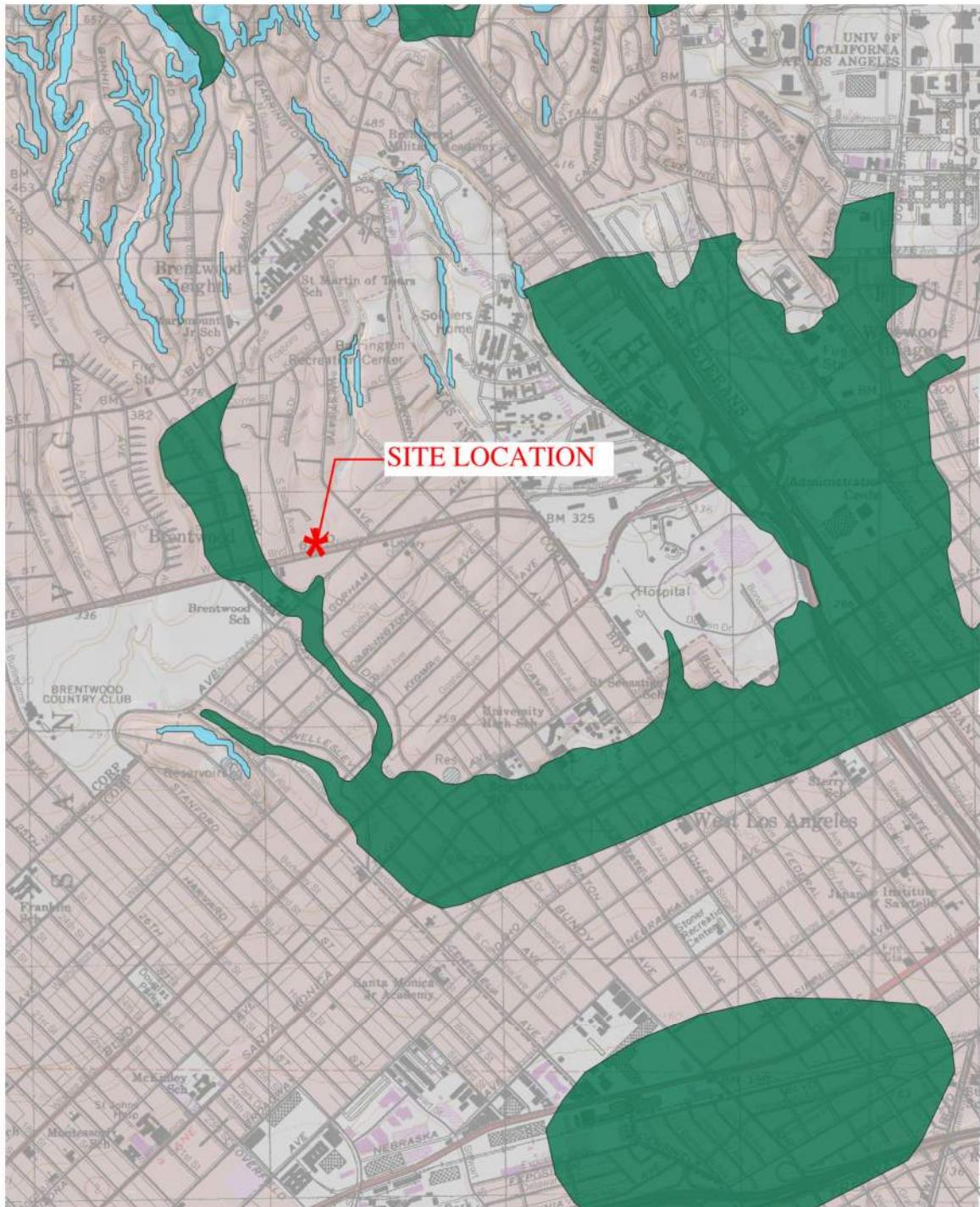
Wed May 31, 2017 18:40:24 UTC

Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1E
(which utilizes USGS hazard data available in 2008)

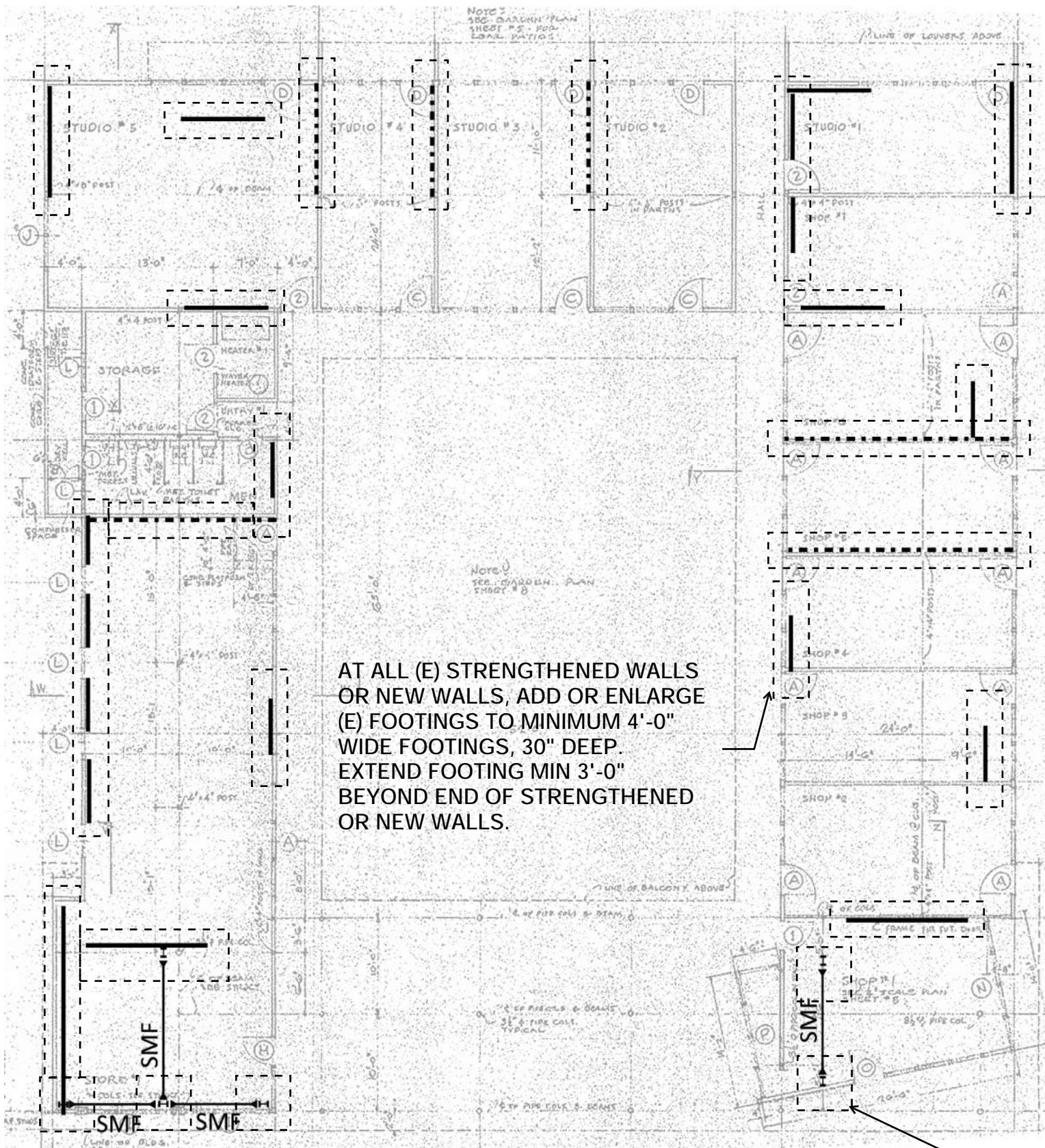

Site Coordinates 34.05251°N, 118.47185°W

Site Soil Classification Site Class D – "Stiff Soil"

USGS-Provided Output

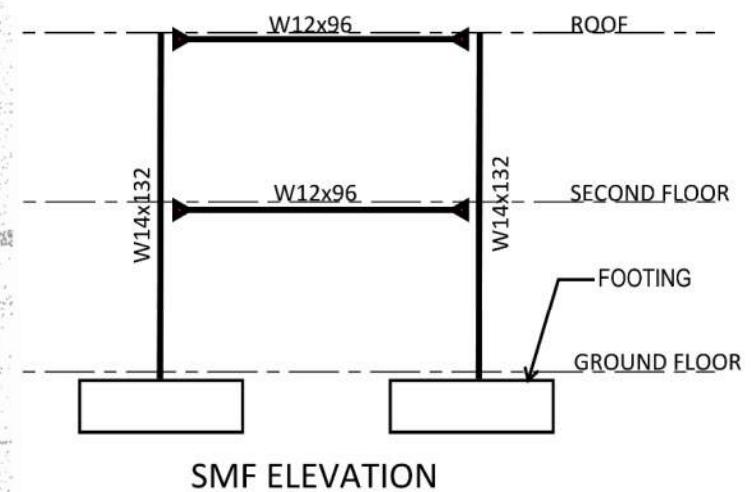

$S_{s,20/50}$	0.760 g	$S_{xs,BSE-1E}$	0.909 g
$S_{1,20/50}$	0.274 g	$S_{x1,BSE-1E}$	0.508 g

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.


Figure 4.1: Spectral Ordinates per ASCE 41-13

May 26, 2021
Job No. 12-L038B

Figure 4.2: State of California Regulatory Map for Seismic Hazards
(Beverly Hills Quadrangle)


May 26, 2021
Job No. 12-L038B

- 10'-0" LONG WOOD SHEAR WALL w/1/2" PLYWOOD & 10d@3":12, ADD (2) SIMPSON HD14 AND 4x8 POST EA END.

----- STRENGTHEN (E) WOOD SHEAR
WALL w/1/2" PLYWOOD &
10d@3":12, ADD (2) SIMPSON
HD14 AND 4x8 POST EA END.

TYPICAL AT ALL FLOOR AND ROOF:
ADD 3/4" FLOOR AND ROOF PLYWOOD
OVER (E) SHEATHING AND NAIL
w/10d@4:12.

— NEW FOOTINGS 6'-0" x 6'-0" x
— 30" DEEP FOOTINGS UNDER
ALL SMF COLUMNS, U.N.O.

Figure 7.1: Conceptual Shear Wall and Steel Moment Frame Locations

APPENDIX A
Tier 1 Checklists

Chapter 16.0 Tier 1 Checklist

STRUCTURAL COMPONENTS	
C NC U NA	LOAD PATH. The structure shall contain a complete, well-defined load path, including structural elements and connections that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
C NC U NA	WALL ANCHORAGE. Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections shall have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.5.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1)

16.1.2LS Life Safety Basic Configuration Checklist

Low Seismicity

Building System

GENERAL	
C <input checked="" type="checkbox"/> U <input type="checkbox"/> NA	LOAD PATH. The structure shall contain a complete, well defined load path, including structural elements and connections that serve to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
C <input type="checkbox"/> NC <input type="checkbox"/> U <input checked="" type="checkbox"/> NA	ADJACENT BUILDING. The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement shall not apply for the following building types: W1, W1a, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)
C <input type="checkbox"/> NC <input type="checkbox"/> U <input checked="" type="checkbox"/> NA	MEZZANINES. Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)
BUILDING CONFIGURATION	
C <input checked="" type="checkbox"/> U <input type="checkbox"/> NA	WEAK STORY. The sum of the shear strengths of the seismic-force resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)
C <input type="checkbox"/> NC <input checked="" type="checkbox"/> U <input type="checkbox"/> NA	SOFT STORY. The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)
C <input checked="" type="checkbox"/> U <input type="checkbox"/> NA	VERTICAL IRREGULARITIES. All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)
C <input type="checkbox"/> NC <input type="checkbox"/> U <input checked="" type="checkbox"/> NA	GEOMETRY. There are no changes in the horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)
C <input checked="" type="checkbox"/> NC <input type="checkbox"/> U <input type="checkbox"/> NA	MASS. There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)
C <input type="checkbox"/> NC <input checked="" type="checkbox"/> U <input type="checkbox"/> NA	TORSION. The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)

Moderate Seismicity (Complete the following items in addition to the items for Low Seismicity)

GEOLOGIC SITE HAZARDS	
C <input checked="" type="checkbox"/> NC <input type="checkbox"/> U <input type="checkbox"/> NA	LIQUEFACTION. Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft. under the building. (Commentary: Sec. A.6.1.1. Tier 2: Sec. 5.4.3.1)
C <input checked="" type="checkbox"/> NC <input type="checkbox"/> U <input type="checkbox"/> NA	SLOPE FAILURE. The building site sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: Sec. 5.4.3.1)

<input checked="" type="radio"/> NC U NA	SURFACE FAULT RUPTURE. Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: Sec. 5.4.3.1)
--	--

High Seismicity (Complete the following items in addition to the items for Low and Moderate Seismicity)

FOUNDATION CONFIGURATION	
<input checked="" type="radio"/> NC U NA	OVERTURNING. The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)
<input checked="" type="radio"/> NC U NA	THIS BETWEEN FOUNDATION ELEMENTS. The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)

16.3LS Life Safety Structural Checklist for Building Type W2: Wood Frames, Commercial and Industrial

Low and Moderate Seismicity

LATERAL-SEISMIC-FORCE-RESISTING SYSTEM	
C NC U NA	REDUNDANCY. The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1, and)
C NC U NA	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing 700 lb/ft Straight sheathing 100 lb/ft All other conditions 100 lb/ft
C NC U NA	STUCCO (EXTERIOR PLASTER) SHEAR WALLS. Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1)
C NC U NA	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS. Interior plaster or gypsum wallboard is not used as shear walls on buildings over one story in height with the exception of the uppermost level of a multistory building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1)
C NC U NA	NARROW WOOD SHEAR WALLS. Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)
C NC U NA	WALLS CONNECTED THROUGH FLOORS. Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2)
C NC U NA	HILLSIDE SITE. For structures that are taller on at least one side by more than one-half story due to a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3)
C NC U NA	CRIPPLE WALLS. Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)
C NC U NA	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5)
CONNECTIONS	
C NC U NA	WOOD POSTS. There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3)
C NC U NA	WOOD SILLS. All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3)
C NC U NA	GIRDER/COLUMN CONNECTION. There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)

High Seismicity (Complete the following items in addition to the items for Low and Moderate Seismicity)

DIAPHRAGMS	
C NC U NA	DIAPHRAGM CONTINUITY. The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)
C NC U NA	ROOF CHORD CONTINUITY. All chord elements are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1)
C NC U NA	DIAPHRAGM REINFORCEMENT AT OPENINGS. There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5)
C NC U NA	STRAIGHT SHEATHING. All straight sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)
C NC U NA	SPANS. All wood diaphragms with spans greater than 24 ft. consist of wood structural panels or diagonal sheathing. Wood commercial and industrial buildings may have rod-braced systems. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)
C NC U NA	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS. All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 feet and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)
C NC U NA	OTHER DIAPHRAGMS. The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)
CONNECTIONS	
C NC U NA	WOOD SILL BOLTS. Sill bolts are spaced at 6 feet or less, with proper edge and end distance provided for wood and concrete. (Commentary: A.5.3.7. Tier 2: Sec. 5.7.3.3)

**Exhibit E – Barry Building LA Conservancy
Comments Review by Englekirk, dated May 25, 2023**

May 25, 2023

via email: Ed.Casey@alston.com

888 S. Figueroa Street
18th Floor
Los Angeles, CA 90017

323.733.6673 T

www.englekirk.com

Mr. Ed Casey
Alston & Bird LLP
333 S. Hope Street, 16th Floor
Los Angeles, California 90071

Los Angeles
Orange County
Honolulu

Regarding: Barry Building (11973 San Vicente Boulevard, Los Angeles, CA 90049)
Los Angeles Conservancy Comments Review

Tony Ghodsi, PE, SE
Lawrence Y. Ho, PE, SE
Michael K. Kawaharada, PE, SE
Christopher Rosien
Thomas A. Sabol, PhD, PE, SE
Vladimir A. Volnyy, PE, SE
Ety Benichou, PE, SE
Mohamed Hassan, PhD, PE, SE
Mahmoud Faghihi, PE, SE
Zen Hoda, PE, SE
Kimberly Hoo, PE, SE
Diana Erickson Nishi, PE, SE
Reid Nishimura, PE, SE
Thomas Y. Nishi, PE, SE
Daniel Chan, PE, SE, LEED AP
Mitchel Le Heux, PE, SE
Katherlin Lee Choi
Milton S. Shiosaki
Daniel W. Shubin
Edward Silver, PE, SE

Dear Mr. Casey,

Per your request, we have reviewed the comments generated by the Los Angeles Conservancy and Corin Kahn in form of letter dated April 18, 2023, regarding the Barry Building located at 11973 San Vicente Boulevard, Los Angeles, CA 90049. Our review was limited to Comments No. A3-4 and A3-5 stated below.

Conservancy Comment No. A3-4

II. Demolition by neglect is being used as a tactic to circumvent and piecemeal historic preservation regulations and CEQA.

This comment suggests that the seismic instability of the Barry Building is due to neglect in maintenance and repair of the building. In response, it is our opinion that the identified seismic deficiencies in the building are not result of the owner's negligence in proper maintenance of the building. Instead, the deficiencies are due to the design of the building when it was built in the early 1950s. Buildings designed and constructed at that time had low seismic demands and requirements. Today the demands are much higher. So, in addition to strengthening the existing shear walls in the building, new (not replacement) shear walls and steel moment frames would need to be added, specifically 20 new (and additional) two-story shear walls and three new (and additional) steel moment frames would need to be added to the building to meet today's seismic standards. The absence of such shear walls and moment frames is not due to lack of maintenance and repair.

Conservancy Comment No. A3-5

III. Refusal to comply with City's mandatory soft-story seismic retrofit ordinance(s) is no excuse for approval to demolish.

In addition, to saying that the owner of the Barry Building has not performed a seismic retrofit in accordance with the City's soft story ordinance, this comment also makes these statements—

"City ordinance 183893 (approved November 15, 2015) and 184081 (approved February 1, 2016) that outline the City's mandatory soft-story seismic retrofit requirements allow for flexibility and specifically call out "qualified historic buildings" and state they "shall comply with requirements of the California Historical Building Code established under Part 8, Title 24 of the California Code of Regulations." This provides additional flexibility should owners pursue this option.

Within the Draft EIR and Alternatives section, statements are made that the soft-story seismic retrofit requirements only applies to the south wing on the building, and does not affect the east, north or west wings of the building. While additional structural deficiencies may be needing to be addressed there, there is no limitation to completing this scope. This demonstrates the required work is isolated and therefore can be effectively addressed to meet the City's order to comply without calling for the demolition of the Barry Building."

Englekirk Structural Engineers performed a seismic assessment of the Barry Building using the requirements outlined in ASCE 41-13, in June of 2022. Our findings and proposed retrofit scheme were summarized in the report dated June 6, 2022 (reference Exhibit A). In addition to the seismic retrofit work identified for the south wing of the building, the report also determined that the north, east, and west wings range are 230% - 650% overstressed. The report identified specific seismic retrofit work for those wings, including new and strengthened wood shear walls, new foundations to support the seismic loads resisted by the new shear walls, and adding and strengthening the first floor, second floor, and roof diaphragms.

As stated in the report, based on our evaluation per the ASCE/SEI 41-13 Tier 1 checklist, the seismic force resisting system of the subject property is generally highly overstressed. The analysis indicates very high demand over capacity ratios for all parts of the existing building. These high ratios indicate that the building is likely to suffer significant damage when subject to a moderate to strong earthquake in the Los Angeles basin. Some portions of the building have no significant seismic resisting elements that can resist the seismic forces from the roof and second floor and can result in a possible collapse when subject to a moderate to strong earthquake. These structural deficiencies represent life safety hazards to occupants in and around the building. Reference Section 5 and 6 of the report for complete list of deficiencies.

A substantial portion of the seismic retrofit work identified in the reports would still be needed if the seismic requirements in the California Historical Building Code were applied. Under that Code, a historical building shall be retrofitted to meet 75% of the current building code forces. However, due to the very high level of overstress in the building, 230% to 650% in the structural members, a substantial portion of the work would still be required. Strengthening of existing shear walls and floor/roof plywood diaphragm, additional shear walls and moment frames would still have to be added.

Finally, as noted by another commentor (Corin Kahn), a simple series of temporary wooden frames is not a valid retrofit option because it would not meet current requirements under either the Uniform Building Code or the Historical Building Code.

Mr. Ed Casey
Alston & Bird LLP
Re: Barry Building (11973 San Vicente Blvd., Los Angeles, CA 90049)
Los Angeles Conservancy Comments Review
May 25, 2023
Page 3 of 3

Respectfully submitted,

A handwritten signature in black ink that reads "V. Volnyy".

Vladimir Volnyy, PE, SE
Principal

VV:gh

Attachments: Exhibit A – ASCE 41-13 Seismic Assessment

EXHIBIT A
ASCE 41-13
Seismic
Assessment
(June 6, 2022)

11973 San Vicente Boulevard

ASCE 41-13 Seismic Assessment

Los Angeles, California

June 6, 2022

Job No. 12-L038B

11973 San Vicente Boulevard

ASCE 41-13 Seismic Assessment

Los Angeles, California

Submitted to:
Alston & Bird LLP
333 South Hope Street
16th Floor
Los Angeles, CA 90071
(213) 576-2526
Attn: Mr. Greg Berlin

June 6, 2022

Job No. 12-L038B

888 S. Figueroa Street
18th Floor
Los Angeles, CA 90017

323.733.6673 T
323.733.8682 F

www.englekirk.com

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Information Reviewed	1
3.0	Building Structural Design	1
4.0	Seismicity	2
4.1	Ground Motion Estimates for Seismic Review (ASCE 41-13)	2
4.2	Seismic or Geotechnical Hazards	2
5.0	Seismic Evaluation Summary	3
5.1	ASCE 41-13 Tier 1	3
6.0	Voluntary Seismic Evaluation	4
6.1	North Wing	5
6.2	East Wing	5
6.3	South Wing	5
6.4	West Wing	5
6.5	Typical Existing Roof and Floor Diaphragm	5
7.0	Voluntary Seismic Retrofit Scheme	6
7.1	Strengthening the Existing Shear Wall	6
8.0	Conclusions	6

Appendix A – Tier 1 Checklists

1.0 INTRODUCTION

This report summarizes findings of the Seismic assessment per ASCE 41-13 (Tier 1) for the existing building located at 11973 San Vicente Boulevard. A seismic retrofit scheme was also developed for the report, based on ASCE 41-13.

This building is also considered a Historical Building and thus can be considered to be subject to the 2016 California Historical Building Code.

2.0 INFORMATION REVIEWED

Existing building plans were provided to our office. The existing building plans were prepared by Milton Caughey Architect for the "Office and Store Building Mr. David Barry" building. There is no construction date shown on these plans. These plans include Sheets 1 through 8, and include the foundation plan and typical framing sections. Based on the site visit performed on March 27, 2012, the existing building condition generally matched the existing building plans. Some discrepancies were observed. These discrepancies include new windows, new doorways, and modified interior demising walls. These discrepancies appear to have been created due to various tenant improvement revisions during the life of the building. This report was performed as an observation of the visible portions of the building and based on the available drawings. No destructive testing was performed.

3.0 BUILDING STRUCTURAL DESCRIPTION

The existing building is a two-story wood framed structure. The floor plan is 100' x 107' with an open 43' x 56' courtyard. The courtyard essentially separates the building into four wings. The north and south wings at the second floor and roof are raised by about 1'-6" from the east and west wings. This essentially creates four separate structural building elements with no common floor or roof diaphragm.

The first floor consists of a 4" concrete slab on grade. The second floor system consists of a 2" diagonal sheathed wood floor supported by sawn lumber joists. The roof system consists of 1" diagonal sheathing supported by sawn lumber joists. Both the floor and roof levels have a ceiling. Typical bearing walls are 2x4 studs. The story height is about 12' at the first floor and 11'-6" at the second floor.

The lateral bracing for this building consists of the horizontal floor and roof diaphragms and the perimeter vertical shear walls. The second floor and roof consist of diagonal sheathing. The nailing pattern for the

sheathing is unknown. This diagonal sheathed floor and roof diaphragm span to the exterior perimeter walls. These exterior walls serve as the vertical shear walls that brace this building. The interior demising walls do not form a complete lateral bracing system as they are discontinuous between floors, and several of these walls have been removed and the wall locations are irregularly distributed.

The foundation system consists of continuous and spread footings that bear on the foundation soil. The plans note that the design bearing pressure is 2,000 psf. The bearing walls are founded on an 8" continuous stem wall which is then supported on a 16" wide x 8" deep continuous footing.

The south wing that faces San Vicente Boulevard utilizes a pass-through at the ground floor that accesses the interior courtyard. As a result, there are no bearing walls that extend to the foundation. Instead, the second floor is supported on a series of steel columns. There are some exterior walls on the eastern side, but they are discontinuous between floors.

4.0 SEISMICITY

4.1 Ground Motion Estimates for Seismic Review (ASCE 41-13)

A geotechnical report was not provided for review. Site geotechnical conditions were assumed to be consistent with Site Class D. The spectral accelerations were obtained from probabilistic hazard mapping software developed by the United States Geological Survey (USGS).

Spectral accelerations were obtained from the USGS for the Basic Safety Earthquake-1E (BSE-1E) hazard level. The BSE-1E hazard level corresponds to an earthquake with an average return period of 225 years or 20% probability of exceedance in 50 years. BSE-1E spectral accelerations are used to evaluate the level of seismicity of the site as required for the Tier 1 Checklist. The ordinates are illustrated in Figure 4.1.

Based on the 0.2 second and 1.0 second spectral accelerations, in accordance with ASCE 41 Table 2-4, the level of seismicity at this site is defined as High. This classification determines the ASCE 41-13 structural checklists required for use in evaluating the building.

4.2 Seismic or Geotechnical Hazards

The state of California has issued a set of regulatory maps detailing regions of potential liquefaction, landside and ground fault rupture. This site is in the Beverly Hills Quadrangle, as shown in Figure 4.2. Areas shown in white have not been identified as locations of potential liquefaction, landside or ground

fault rupture. The map indicates that the site, shown in Figure 4.2, has not been identified as a potential location for any of these seismic or geotechnical hazards.

5.0 SEISMIC EVALUATION SUMMARY

5.1 ASCE 41-13 Tier 1

The building site is classified as “high seismicity” and in accordance with Tier 1 evaluation requirements, the following checklists were reviewed, and applicable “quick checks” were performed:

- 16.1 Basic Checklist
- 16.1.2LS Life Safety Basic Configuration Checklist
- 16.3LS Life Safety Structural Checklist for Building Type W2: Wood Frames, Commercial and Industrial

A copy of the checklists is found in Appendix A. A summary is provided in Table 5.1 below for items that were found “Non-Compliant” or “Unknown”.

Table 5.1: Summary of Checklist Findings

16.1 Basic Checklist		
Item	Non-Compliant/Unknown	Description
Load Path	Non-Compliant	Discontinuous horizontal diaphragms occur at second floor and roof. Vertical elements of seismic-force-resisting system (such as wood shear walls or frames) were not found at all sides of the perimeter. Interior demising walls do not form a complete seismic-force-resisting system as they are discontinuous between floors.
16.1.2LS Life Safety Basic Configuration Checklist		
Item	Non-Compliant/Unknown	Description
Load Path	Non-Compliant	See 16.1 for Description
Weak Story	Non-Compliant	Vertical discontinuities of seismic-force-resisting system were not found at all sides of the perimeter. Interior demising walls do not form a complete lateral bracing system as they are discontinuous between floors.

Soft Story	Unknown	Stiffness of the seismic-force-resisting system cannot be confirmed, as the seismic-force-resisting system (wood shear walls) are not found at all sides of perimeter, and wood shear walls are found discontinuous between floors.
Vertical Irregularities	Non-Complaint	Vertical elements of seismic-force-resisting system (Wood shear walls) were found discontinuous between floors.
Torsion	Unknown	The story center of rigidity cannot be confirmed.
Overturning		

16.3LS Life Safety Checklist for Building Type W2: Wood Frames, Commercial and Industrial

Item	Non-Compliant/Unknown	Description
Redundancy	Non-Complaint	Vertical discontinuities of seismic-force-resisting system were not found at all sides of the perimeter.
Shear Stress Check	Non-Complaint	The shear stress check provides an assessment of the overall level of demand on the structure. Existing shear walls are found to be overstressed.
Stucco (Exterior Plaster) Shear Wall	Unknown	Plywood sheathing on existing exterior wall shear walls cannot be confirmed. Existing shear walls could be a stucco shear wall
Gypsum Wallboard or Plaster Shear Walls	Non-Complaint	Existing interior demising walls are found to be Gypsum board.
Narrow Wood Shear Walls	Non-Compliant	Existing shear walls were found with an aspect ratio less than 2-to-1.

6.0 VOLUNTARY SEISMIC EVALUATION

Based on the potential deficiencies outlined in Section 5.1, additional analyses were performed to review the elements of the seismic-force-resisting system. Shear stress of shear walls and diaphragms were reviewed. The Basic Safety Earthquake-1E (BSE-1E) hazard level per ASCE/SEI 41-13 was used to determine building element 'demand over capacity ratios' (DCRs). These ratios compare the seismic demand versus the estimated capacity to provide a comparative estimate as to what level these building elements are overstressed. The lateral capacity of existing building elements is based on ASCE 41-13 Table 12-1, "The Default Expected Strength Values for Wood and Light Frame Shear Walls," and Table 12-2, "The Default Expected Strength Values for Wood Diaphragms."

The existing building geometry structurally separates the building into four separate wings. Discontinuities at the second floor and roof occur at each wing interface, thereby creating discontinuous horizontal

diaphragms between each wing. Because they are separate wings, each wing cannot rely on the adjacent wings to resist seismic loads. Therefore, each wing was evaluated individually.

6.1 North Wing

In the north-south direction, roughly 120 feet of existing walls are located, such that they act as lateral resisting elements. In the east-west direction, roughly 42 feet of existing walls are located, such that they act as lateral resisting elements. The DCR for the walls in the north-south direction is 230% overstressed. The DCR for the walls in the east-west direction is 650% overstressed.

6.2 East Wing

In the north-south direction, there is no existing wall located as a lateral resisting element. The exterior wall along grid H and the interior courtyard wall along grid G do not contain structural elements that can be identified as a lateral resisting element. In the east-west direction, roughly 90 feet of existing walls are located as lateral resisting element. The DCR for walls in the north-south direction cannot be determined since no lateral resisting element can be identified. Significant lateral displacement may be expected in the north-south direction of the east wing during a seismic event. The DCR for walls in the east-west direction is 190% overstressed.

6.3 South Wing

There is no existing wall or lateral resisting element to resist seismic loads from the second floor and roof in either the north-south or east-west directions. As a result, significant lateral displacement may be expected during a seismic event. The steel posts that support this wing will be subjected to this potential lateral displacement. Since the steel posts do not possess any lateral resistance, a possible collapse of this wing can result during a seismic event.

6.4 West Wing

In the north-south direction, roughly 50 feet of existing walls are located, such that they act as a lateral resisting element. In the east-west direction, roughly 40 feet of existing walls are located, such that they act as a lateral resisting element. There is no wall located at the south end of the wing. Significant lateral displacement may be expected in the east-west direction during a seismic event. The DCR for the walls in the north-south direction is 360% overstressed. The DCR for the walls in the east-west direction is 400% overstressed.

6.5 Typical Existing Roof and Floor Diaphragm

The DCR for the typical diaphragm at the roof and second floor is highly overstressed. Diaphragm shear stress cannot be determined at areas where vertical seismic-force resisting elements are not found.

7.0 Voluntary Seismic Retrofit Scheme

To conform to the seismic force resisting requirements for a new structure, we propose a seismic retrofit scheme that includes strengthening the existing walls, adding new 2-story shear walls, and new steel moment frames. (See Figure 7.1 for conceptual shear wall and steel moment frame locations)

7.1 Strengthening Existing Shear Wall

The existing shear walls need to be continuous between floors. The strengthening requirements include adding new plywood sheathing and nailing, new hold-down anchors at each end of the wall, new floor to wall connection, and new footing/enhancing for the existing footing.

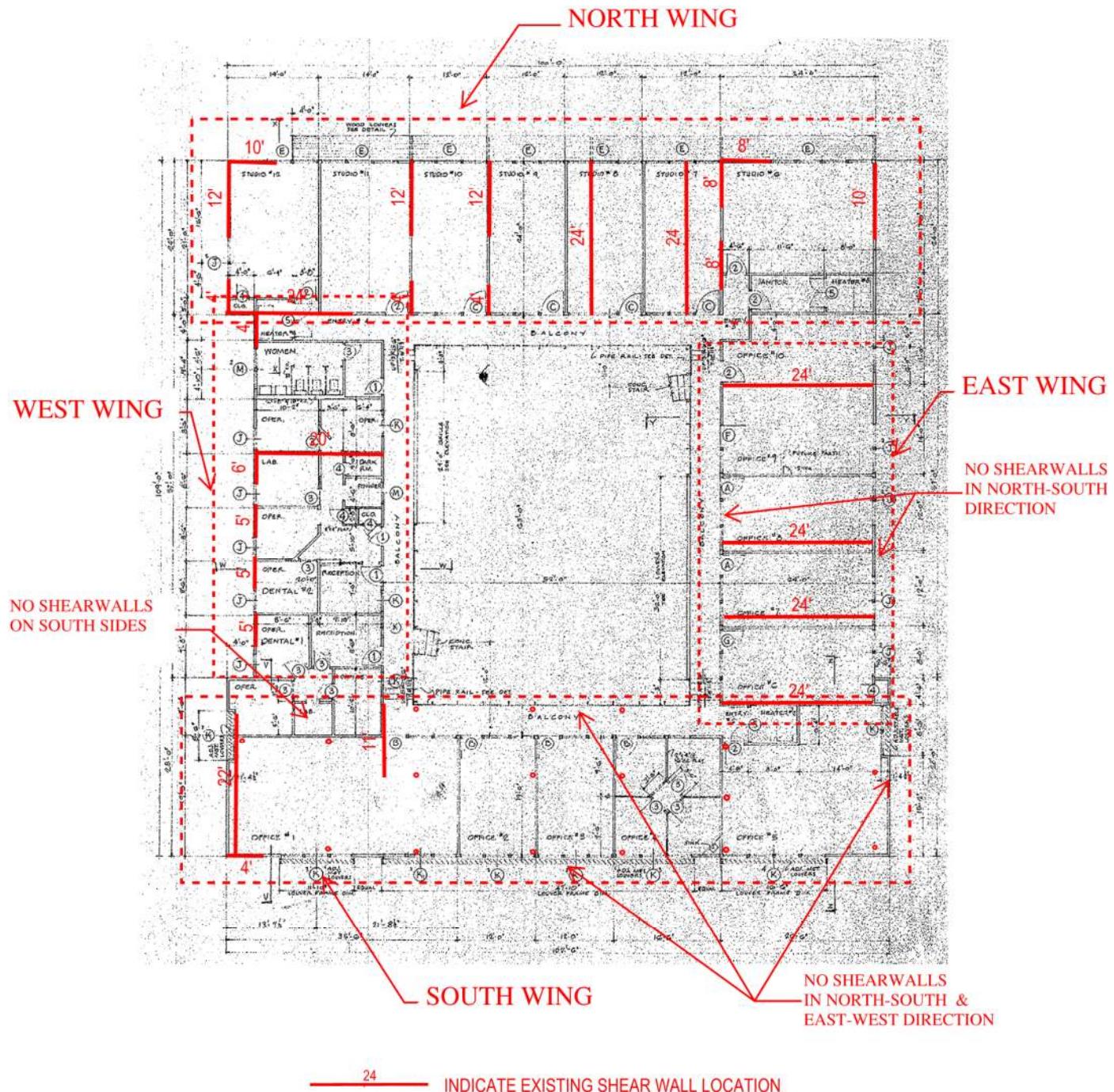
New Shear Wall: New wood shear walls need to be continuous between floors. The new wood shear wall construction includes new 2x stud wall framing, new plywood sheathing and nailing, new hold-down anchors at each end of the wall, and new footing.

New Floor and Roof Diaphragm Sheathing: New $\frac{3}{4}$ " plywood sheathing over the entirety of the existing floor and roof sheathing.

Steel Moment Resisting Frame: Two-story steel moment resisting frames are to be introduced at the south wing where no continuous shear wall may be feasible. The steel moment resisting frames consist of new wide flange steel columns, wide flange steel beams, and new concrete footings.

Consideration for Reducing Impact of Retrofit on Historical Fabric: The above seismic retrofit can be done to minimize the impact on the building historic fabric. The addition of new plywood shear walls can be performed on the inside force of the exterior walls to avoid removing or damage the exterior skin. The new walls can be located to avoid closing any existing historic windows. The new steel moment resisting frames that are located at the front wing can be placed interior to the building footprint. The second floor and roof diaphragm will require enhanced nailing to allow the adjustment of the frame relocations.

Seismic Retrofit Cost: The cost to retrofit the building can vary, depending on the specific repair details, sequencing, and potential unforeseen conditions. We estimate the retrofit cost will be about \$2.0M to \$2.5M. This cost does not include any costs such as possible code required upgrades such as the American Disability Act (ADA), plumbing, mechanical, lighting, etc. Also, the addition of new shear walls may render portions of the building less rentable because of the shear wall obstruction at storefront windows, office windows, etc.


8.0 CONCLUSIONS

Based on our evaluation per the ASCE/SEI 41-13 Tier 1 checklist, the seismic force resisting system of the subject property is generally highly overstressed.

The analysis indicates high demand over capacity ratios for all parts of the existing building. These high ratios indicate that the building is likely to suffer significant damage when subject to a moderate to strong earthquake in the Los Angeles basin. Some portions of the building have no significant seismic resisting elements that can resist the seismic forces from the roof and second floor and can result in a possible collapse when subject to a moderate to strong earthquake. These structural deficiencies represent life safety hazards to occupants in and around the building. The above mentioned seismic retrofits would correct the structural deficiencies identified in this report.

The California Historical Building Code allows an analysis and retrofit to meet 75% of the current building code forces. A direct comparison of this force level to ASCE 41-13 was not performed. However, based on the level of overstress, it is our opinion that the same conclusion and retrofit recommendations will apply.

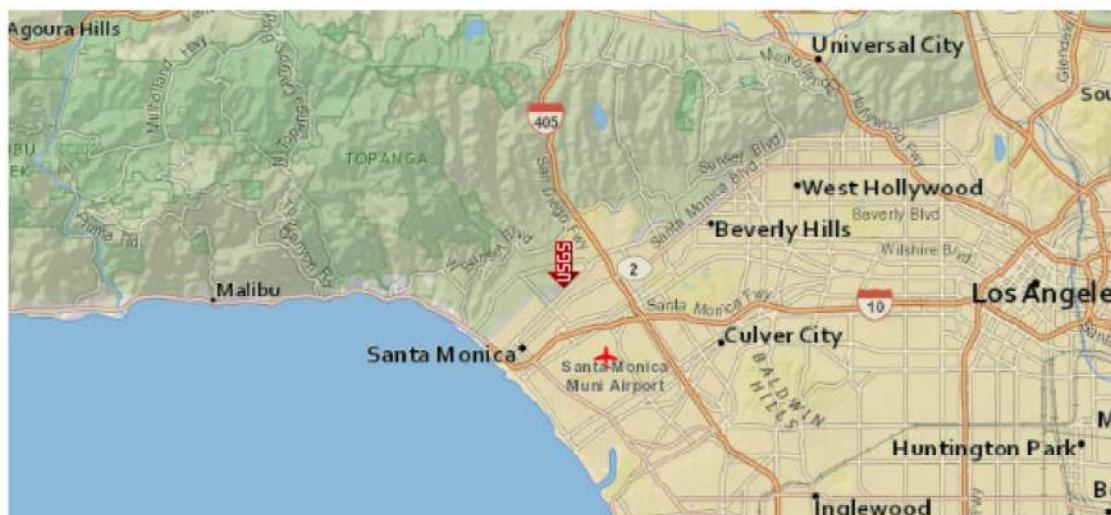
RT:gh

Figure 3.1: Existing Shear Wall Locations

May 26, 2021
Job No. 12-L038B

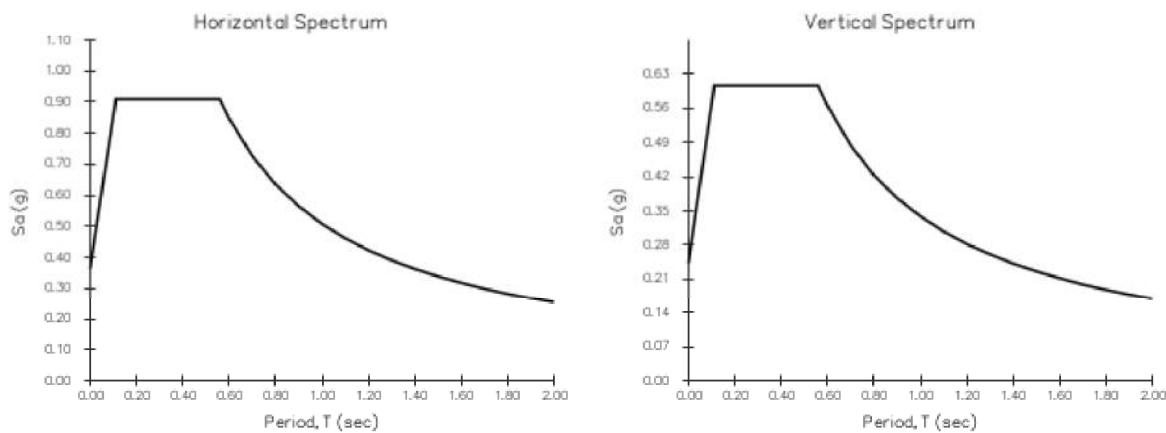
USGS Design Maps Summary Report

User-Specified Input


Report Title 11973 San Vicente Blvd

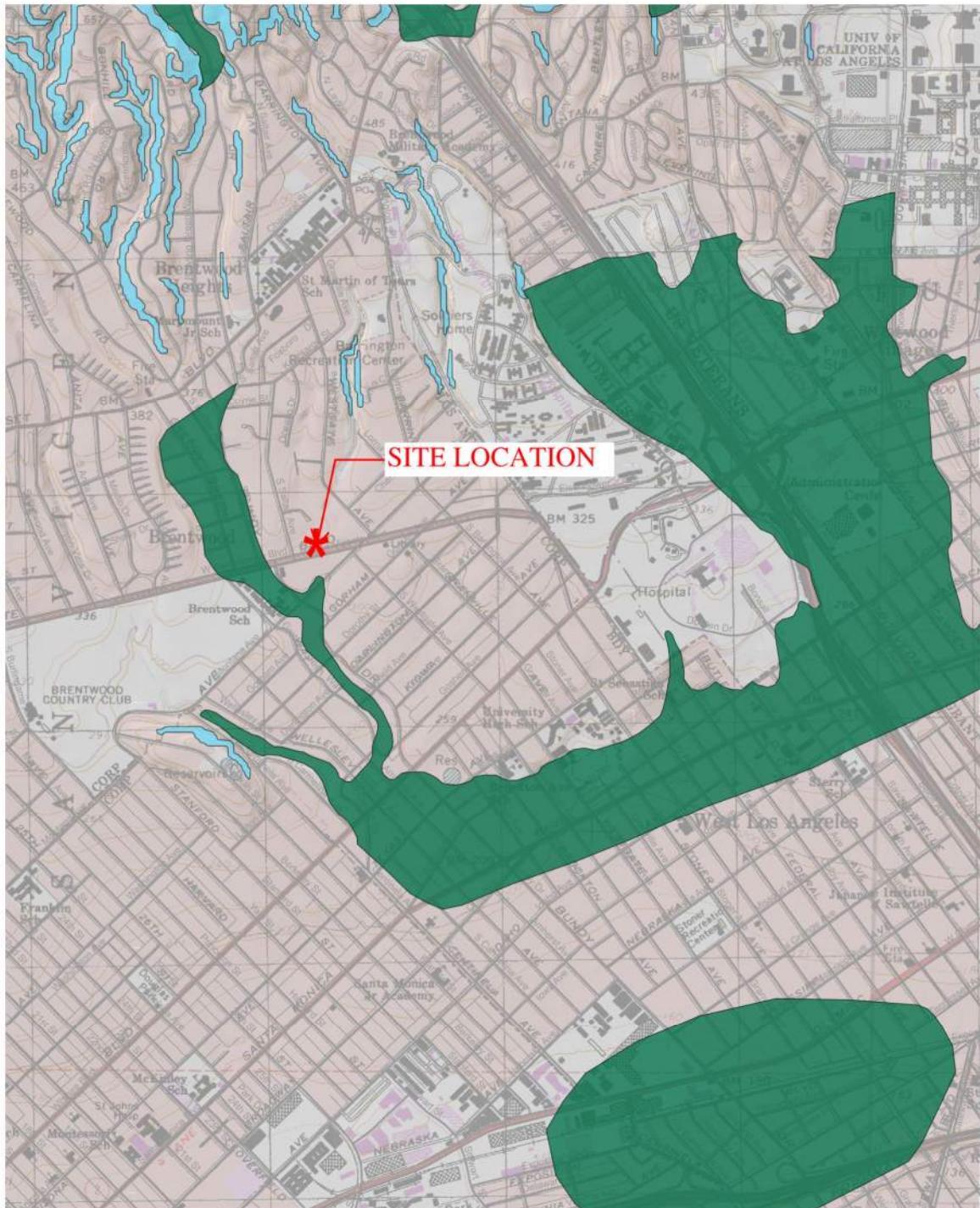
Wed May 31, 2017 18:40:24 UTC

Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1E
(which utilizes USGS hazard data available in 2008)

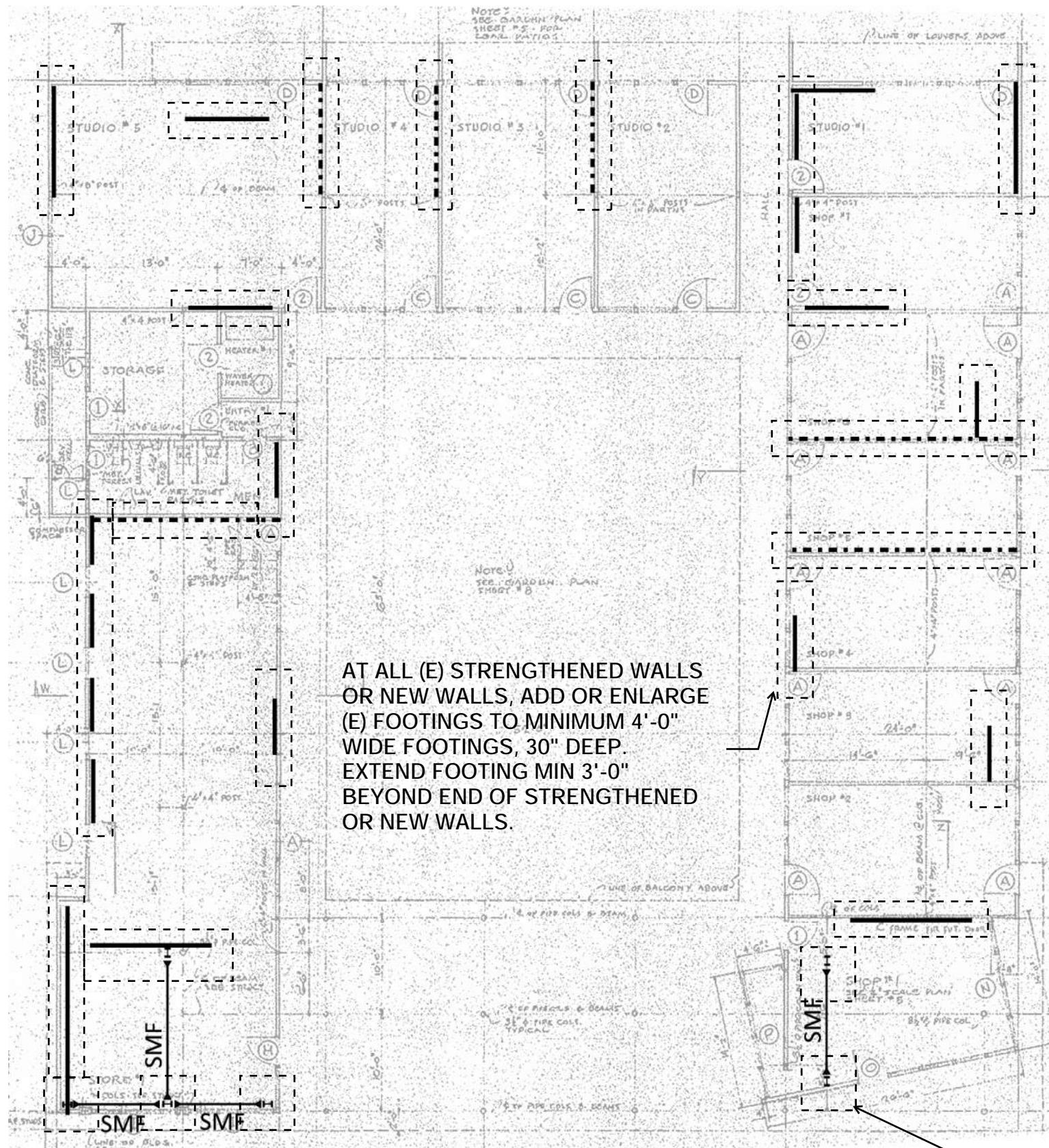

Site Coordinates 34.05251°N, 118.47185°W

Site Soil Classification Site Class D – "Stiff Soil"

USGS-Provided Output

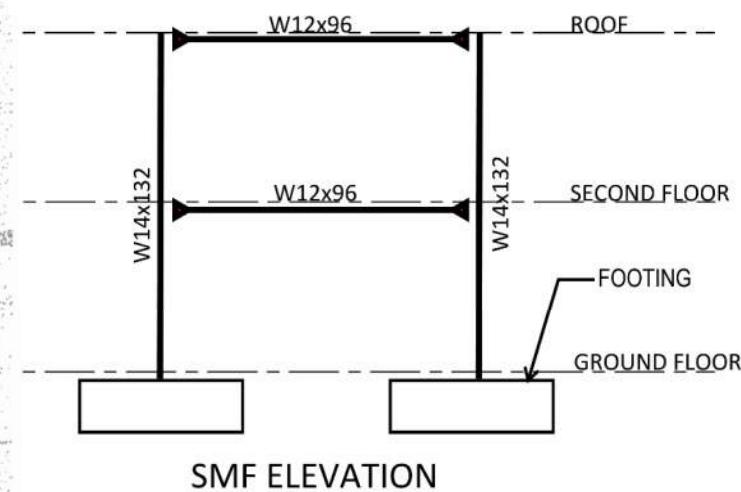

$S_{s,20/50}$	0.760 g	$S_{xs,BSE-1E}$	0.909 g
$S_{1,20/50}$	0.274 g	$S_{x1,BSE-1E}$	0.508 g

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.


Figure 4.1: Spectral Ordinates per ASCE 41-13

May 26, 2021
Job No. 12-L038B

Figure 4.2: State of California Regulatory Map for Seismic Hazards
(Beverly Hills Quadrangle)


May 26, 2021
Job No. 12-L038B

- 10'-0" LONG WOOD SHEAR WALL w/1/2" PLYWOOD & 10d@3":12, ADD (2) SIMPSON HD14 AND 4x8 POST EA END.

----- STRENGTHEN (E) WOOD SHEAR
WALL w/1/2" PLYWOOD &
10d@3":12, ADD (2) SIMPSON
HD14 AND 4x8 POST EA END.

TYPICAL AT ALL FLOOR AND ROOF:
ADD 3/4" FLOOR AND ROOF PLYWOOD
OVER (E) SHEATHING AND NAIL
w/10d@4:12.

— NEW FOOTINGS 6'-0" x 6'-0" x
— 30" DEEP FOOTINGS UNDER
— ALL SMF COLUMNS, U.N.O.

Figure 7.1: Conceptual Shear Wall and Steel Moment Frame Locations

APPENDIX A
Tier 1 Checklists

Chapter 16.0 Tier 1 Checklist

STRUCTURAL COMPONENTS	
C NC U NA	LOAD PATH. The structure shall contain a complete, well-defined load path, including structural elements and connections that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
C NC U NA	WALL ANCHORAGE. Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections shall have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.5.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1)

16.1.2LS Life Safety Basic Configuration Checklist

Low Seismicity

Building System

GENERAL	
C NC U NA	LOAD PATH. The structure shall contain a complete, well defined load path, including structural elements and connections that serve to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
C NC U NA	ADJACENT BUILDING. The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement shall not apply for the following building types: W1, W1a, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)
C NC U NA	MEZZANINES. Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)
BUILDING CONFIGURATION	
C NC U NA	WEAK STORY. The sum of the shear strengths of the seismic-force resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)
C NC U NA	SOFT STORY. The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)
C NC U NA	VERTICAL IRREGULARITIES. All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)
C NC U NA	GEOMETRY. There are no changes in the horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)
C NC U NA	MASS. There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)
C NC U NA	TORSION. The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)

Moderate Seismicity (Complete the following items in addition to the items for Low Seismicity)

GEOLOGIC SITE HAZARDS	
C NC U NA	LIQUEFACTION. Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft. under the building. (Commentary: Sec. A.6.1.1. Tier 2: Sec. 5.4.3.1)
C NC U NA	SLOPE FAILURE. The building site sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: Sec. 5.4.3.1)

<input checked="" type="radio"/> NC U NA	SURFACE FAULT RUPTURE. Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: Sec. 5.4.3.1)
--	--

High Seismicity (Complete the following items in addition to the items for Low and Moderate Seismicity)

FOUNDATION CONFIGURATION	
<input checked="" type="radio"/> NC U NA	OVERTURNING. The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)
<input checked="" type="radio"/> NC U NA	THIS BETWEEN FOUNDATION ELEMENTS. The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)

16.3LS Life Safety Structural Checklist for Building Type W2: Wood Frames, Commercial and Industrial

Low and Moderate Seismicity

LATERAL-SEISMIC-FORCE-RESISTING SYSTEM	
C NC U NA	REDUNDANCY. The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1, and)
C NC U NA	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing 700 lb/ft Straight sheathing 100 lb/ft All other conditions 100 lb/ft
C NC U NA	STUCCO (EXTERIOR PLASTER) SHEAR WALLS. Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1)
C NC U NA	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS. Interior plaster or gypsum wallboard is not used as shear walls on buildings over one story in height with the exception of the uppermost level of a multistory building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1)
C NC U NA	NARROW WOOD SHEAR WALLS. Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)
C NC U NA	WALLS CONNECTED THROUGH FLOORS. Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2)
C NC U NA	HILLSIDE SITE. For structures that are taller on at least one side by more than one-half story due to a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3)
C NC U NA	CRIPPLE WALLS. Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)
C NC U NA	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5)
CONNECTIONS	
C NC U NA	WOOD POSTS. There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3)
C NC U NA	WOOD SILLS. All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3)
C NC U NA	GIRDER/COLUMN CONNECTION. There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)

High Seismicity (Complete the following items in addition to the items for Low and Moderate Seismicity)

DIAPHRAGMS	
C NC U NA	DIAPHRAGM CONTINUITY. The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)
C NC U NA	ROOF CHORD CONTINUITY. All chord elements are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1)
C NC U NA	DIAPHRAGM REINFORCEMENT AT OPENINGS. There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5)
C NC U NA	STRAIGHT SHEATHING. All straight sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)
C NC U NA	SPANS. All wood diaphragms with spans greater than 24 ft. consist of wood structural panels or diagonal sheathing. Wood commercial and industrial buildings may have rod-braced systems. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)
C NC U NA	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS. All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 feet and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)
C NC U NA	OTHER DIAPHRAGMS. The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)
CONNECTIONS	
C NC U NA	WOOD SILL BOLTS. Sill bolts are spaced at 6 feet or less, with proper edge and end distance provided for wood and concrete. (Commentary: A.5.3.7. Tier 2: Sec. 5.7.3.3)